During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There is strong indication that both receptors interact both functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR co-expression on MR genome-wide chromatin binding and transcriptional responses to aldosterone and glucocorticoids, both physiological ligands of this receptor. Our data show that GR co-expression alters MR genome-wide binding in a locus- and ligand-specific way. MR binding to consensus DNA sequences is affected by GR. Transcriptional responses of MR in the absence of GR are weak and show poor correlation with chromatin binding. In contrast, co-expression of GR potentiated MR-mediated transcription, particularly in response to aldosterone. Finally, single-molecule tracking of MR suggests that the presence of GR contributes to productive binding to chromatin. Together, our data indicate that co-expression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
The mineralocorticoid and glucocorticoid receptors (MR and GR) are evolutionary related nuclear receptors with highly conserved DNA- and ligand-binding domains (DBD and LBD), which determine promiscuous activation by corticosteroid hormones (aldosterone and glucocorticoids) and binding to a shared DNA consensus sequence, the hormone response element (HRE). In addition, MR and GR functionally interact, likely through direct formation of heteromeric complexes, potentially contributing to cell-specific corticosteroid signaling. It has recently been proposed that agonist and DNA binding promote GR self-association in tetramers. Here we investigated MR quaternary arrangement after receptor activation. To that end we used a fluorescence imaging technique, Number & Brightness (N&B) analysis, in a cell system where receptor-DNA interaction can be studied in live cells in real time. Our results show that agonist-bound MR is a tetramer in the nucleoplasm, forming higher order oligomers upon binding to HREs. Antagonists form intermediate quaternary arrangements, suggesting that the formation of large oligomeric complexes is essential for function. We also show that divergence between MR and GR quaternary arrangements are driven by different functionality of multimerization interfaces in the DBD and LBD and their interplay with the N-terminal domain. In spite of contrasting quaternary structures, MR and GR are able to form heteromers. Given the importance of both receptors as pharmacological targets and the differential oligomerization induced by antagonists, our findings suggest that influencing quaternary structure may be important to provide selective modulation of corticosteroid signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.