Background:Tearing an anterior cruciate ligament (ACL) graft is a devastating occurrence after ACL reconstruction (ACLR). Identifying and understanding the independent predictors of ACLR graft failure is important for surgical planning, patient counseling, and efforts to decrease the risk of graft failure.Hypothesis:Patient and surgical variables will predict graft failure after ACLR.Study Design:Prospective cohort study.Methods:A multicenter group initiated a cohort study in 2002 to identify predictors of ACLR outcomes, including graft failure. First, to control for confounders, a single surgeon’s data (n = 281 ACLRs) were used to develop a multivariable regression model for ACLR graft failure. Evaluated variables were graft type (autograft vs allograft), sex, age, body mass index, activity at index injury, presence of a meniscus tear, and primary versus revision reconstruction. Second, the model was validated with the rest of the multicenter study’s data (n = 645 ACLRs) to evaluate the generalizability of the model.Results:Patient age and ACL graft type were significant predictors of graft failure for all study surgeons. Patients in the age group of 10 to 19 years had the highest percentage of graft failures. The odds of graft rupture with an allograft reconstruction are 4 times higher than those of autograft reconstructions. For each 10-year decrease in age, the odds of graft rupture increase 2.3 times.Conclusion:There is an increased risk of ACL graft rupture in patients who have undergone allograft reconstruction. Younger patients also have an increased risk of ACL graft failure.Clinical Relevance:Given these risks for ACL graft rupture, allograft ACLRs should be performed with caution in the younger patient population.
We report the load to failure in tensile testing of the MaxFire™ meniscal repair system (Biomet Inc, Warsaw, IN) and compare it to other current meniscal repair devices and mattress suture techniques. After creating a longitudinal tear in 42 one-year-old bovine menisci, 7 specimen groups defined by the meniscal repair device, suture, and/or mattress technique used for meniscal repair were randomly established: (Group 1: Fiberwire™ vertical mattress (VM), Group 2: Fiberwire™ horizontal mattress (HM), Group 3: FasT-Fix™ VM, Group 4: FasT-Fix™ HM, Group 5: RapidLoc™, Group 6: MaxFire™ VM, Group 7: MaxFire™ HM). After completing the repairs, the meniscal specimens were cyclically pre-loaded before load to failure testing was performed. The mean load to failure for each group was: Fiberwire VM (185 ± 41 N), Fiberwire HM (183 ± 36 N), FasT-Fix VM (125 ± 8 N), FasT-Fix HM (107 ± 29 N), RapidLoc (70 ± 12 N), MaxFire VM (145 ± 44 N), MaxFire HM (139 ± 50 N). An analysis of variance demonstrated a significant difference in the mean load to failure (F = 8.31 P < 0.01). Statistically significant differences were seen between both Fiberwire groups verses FasT-Fix HM and Rapid-Loc (P < 0.05). Three modes of failure were observed: suture breakage (17/42, 40.5%), tissue failure (18/42, 42.9%), and knot failure (7/42, 16.7%). 2-0 Fiberwire™ VM and HM repairs had the highest load to failure of all groups tested. The load to failure for the MaxFire™ meniscal repair system is comparable to other available all-inside meniscal repair systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.