The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.
This paper presents new definitions for obtaining reproducible results in numerical phone dosimetry. Numerous numerical dosimetric studies have been published about the exposure of mobile phone users which concluded with conflicting results. However, many of these studies lack reproducibility due to shortcomings in the description of the phone positioning. The new approach was tested by two groups applying two different numerical program packages to compare the specific anthropomorphic mannequin (SAM) to 14 anatomically correct head models. A novel definition for the positioning of mobile phones next to anatomically correct head models is given along with other essential parameters to be reported. The definition is solely based on anatomical characteristics of the head. A simple up-to-date phone model was used to determine the peak spatial specific absorption rate (SAR) of mobile phones in SAM and in the anatomically correct head models. The results were validated by measurements. The study clearly shows that SAM gives a conservative estimate of the exposure in anatomically correct head models for head only tissue. Depending on frequency, phone position and head size the numerically calculated 10 g averaged SAR in the pinna can be up to 2.1 times greater than the peak spatial SAR in SAM. Measurements in small structures, such as the pinna, will significantly increase the uncertainty; therefore SAM was designed for SAR assessment in the head only. Whether SAM will provide a conservative value for the pinna depends on the pinna SAR limit of the safety standard considered.
BACKGROUND Implantable pacemakers and implantable cardioverter-defibrillators (ICDs) are designed to include a "magnet mode" feature that can be activated from magnets stronger than 10 G. This feature is designed to be used when a patient is undergoing a procedure where electromagnetic interference is possible, or anytime suspension of tachycardia detection and therapy is needed. A publication in Heart Rhythm demonstrates an iPhone 12 triggering the magnet mode of a Medtronic ICD.OBJECTIVE The purpose of this study is to determine the separation distance between consumer electronic devices that may create magnetic interference, including cell phones and smart watches, and implantable pacemakers and ICDs where magnet mode can be triggered.
METHODSThe static magnetic fields of the iPhone 12 models and Apple Watch were measured at several planes in 1 cm resolution using an FW Bell 5180 Gauss Meter with STD18-0404 Transverse probe (unidirectional probe).
RESULTSAll iPhone 12 and Apple Watch 6 models tested have static magnetic fields significantly greater than 10 G in close proximity (1-11 mm), which attenuates to below 10 G between 11 and 20 mm.CONCLUSION The findings of this study support the US Food and Drug Administration recommendation that patients keep any consumer electronic devices that may create magnetic interference, including cell phones and smart watches, at least 6 inches away from implanted medical devices, in particular pacemakers and cardiac defibrillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.