Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.
BackgroundLarge radial tears that disrupt the circumferential fibers of the meniscus are associated with reduced meniscal function and increased risk of joint degeneration. Electrospun fibrous scaffolds can mimic the topography and mechanics of fibrocartilaginous tissues and simultaneously serve as carriers of cells and growth factors, yet their incorporation into clinically relevant suture repair techniques for radial meniscus tears is unexplored. The purposes of this study were to (1) evaluate the effect of fiber orientation on the tensile properties and suture-retention strength of multilayered electrospun scaffolds and (2) determine the mechanical effects of scaffold inclusion within a surgical repair of a simulated radial meniscal tear. The experimental hypothesis was that augmentation with a multilayered scaffold would not compromise the strength of the repair.MethodsThree multilayered electrospun scaffolds with different fiber orientations were fabricated–aligned, random, and biomimetic. The biomimetic scaffold was comprised of four layers in the following order (deep to superficial)–aligned longitudinal, aligned transverse, aligned longitudinal, and random–respectively corresponding to circumferential, radial, circumferential, and superficial collagen fibers of the native meniscus. Material properties (i.e., ultimate stress, modulus, etc.) of the scaffolds were determined in the parallel and perpendicular directions, as was suture retention strength. Complete radial tears of lateral bovine meniscus explants were repaired with a double horizontal mattress suture technique, with or without inclusion of the biomimetic scaffold sheath. Both repair groups, as well as native controls, were cyclically loaded between 5 and 20 N for 500 cycles and then loaded to failure. Clamp-to-clamp distance (i.e., residual elongation) was measured following various cycles. Ultimate load, ultimate elongation, and stiffness, were also determined. Group differences were evaluated by one-way ANOVA or Student’s t-test where appropriate.ResultsAligned scaffolds possessed the most anisotropic mechanical properties, whereas random scaffolds showed uniform properties in the parallel and perpendicular directions. In comparison, the biomimetic scaffold possessed moduli in the parallel (68.7 ± 14.7 MPa) and perpendicular (39.4 ± 11.6 MPa) directions that respectively approximate the reported circumferential and radial tensile properties of native menisci. The ultimate suture retention load of the biomimetic scaffold in the parallel direction (7.2 ± 1.6 N) was significantly higher than all other conditions (p < 0.001). Biomimetic scaffold augmentation did not compromise mechanical properties when compared against suture repair in terms of residual elongation after 500 cycles (scaffold: 5.05 ± 0.89 mm vs. repair: 4.78 ± 1.24 mm), ultimate failure load (137.1 ± 31.0 N vs. 124.4 ± 21.4 N), ultimate elongation (12.09 ± 5.89 mm vs. 10.14 ± 4.61 mm), and stiffness (20.8 ± 3.6 vs. 18.4 ± 4.7 N/mm).ConclusionsWhile multilayered scaffold sheets wer...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.