The ARF tumor suppressor protein stabilizes p53 by antagonizing its negative regulator, Mdm2 (Hdm2 in humans). Both mouse p19 ARF and human p14 ARF bind to the central region of Mdm2 (residues 210 to 304), a segment that does not overlap with its N-terminal p53-binding domain, nuclear import or export signals, or C-terminal RING domain required for Mdm2 E3 ubiquitin ligase activity. The N-terminal 37 amino acids of mouse p19ARF are necessary and sufficient for binding to Mdm2, localization of Mdm2 to nucleoli, and p53-dependent cell cycle arrest. Although a nucleolar localization signal (NrLS) maps within a different segment (residues 82 to 101) of the human p14 ARF protein, binding to Mdm2 and nucleolar import of ARF-Mdm2 complexes are both required for cell cycle arrest induced by either the mouse or human ARF proteins. Because many codons of mouse ARF mRNA are not recognized by the most abundant bacterial tRNAs, we synthesized ARF minigenes containing preferred bacterial codons. Using bacterially produced ARF polypeptides and chemically synthesized peptides conjugated to Sepharose, residues 1 to 14 and 26 to 37 of mouse p19ARF were found to interact independently and cooperatively with Mdm2, while residues 15 to 25 were dispensable for binding. Paradoxically, residues 26 to 37 of mouse p19 ARF are also essential for ARF nucleolar localization in the absence of Mdm2. However, the mobilization of the p19 ARF -Mdm2 complex into nucleoli also requires a cryptic NrLS within the Mdm2 C-terminal RING domain. The Mdm2 NrLS is unmasked upon ARF binding, and its deletion prevents import of the ARF-Mdm2 complex into nucleoli. Collectively, the results suggest that ARF binding to Mdm2 induces a conformational change that facilitates nucleolar import of the ARF-Mdm2 complex and p53-dependent cell cycle arrest. Hence, the ARF-Mdm2 interaction can be viewed as bidirectional, with each protein being capable of regulating the subnuclear localization of the other.
A dynamic capsid is critical to the events that shape the viral life cycle; events such as cell attachment, cell entry, and nucleic acid release demand a highly mobile viral surface. Protein mass mapping of the common cold virus, human rhinovirus 14 (HRV14), revealed both viral structural dynamics and the inhibition of such dynamics with an antiviral agent, WIN 52084. Viral capsid digestion fragments resulting from proteolytic time-course experiments provided structural information in good agreement with the HRV14 three-dimensional crystal structure. As expected, initial digestion fragments included peptides from the capsid protein VP1. This observation was expected because VP1 is the most external viral protein. Initial digestion fragments also included peptides belonging to VP4, the most internal capsid protein. The mass spectral results together with x-ray crystallography data provide information consistent with a ''breathing'' model of the viral capsid. Whereas the crystal structure of HRV14 shows VP4 to be the most internal capsid protein, mass spectral results show VP4 fragments to be among the first digestion fragments observed. Taken together this information demonstrates that VP4 is transiently exposed to the viral surface via viral breathing. Comparative digests of HRV14 in the presence and absence of WIN 52084 revealed a dramatic inhibition of digestion. These results indicate that the binding of the antiviral agent not only causes local conformational changes in the drug binding pocket but actually stabilizes the entire viral capsid against enzymatic degradation. Viral capsid mass mapping provides a fast and sensitive method for probing viral structural dynamics as well as providing a means for investigating antiviral drug efficacy.Human rhinovirus 14 (HRV14), the causative agent of the common cold, is a member of a family of animal viruses-the picornaviruses-whose other members include the polio, hepatitis A, and foot-and-mouth disease viruses (1). The HRV14 virion consists of an icosahedral protein shell, or viral capsid, surrounding an RNA core. The capsid is made up of 60 copies of each of four structural proteins, VP1-VP4. Based on crystal structure data (2), VP1, VP2, and VP3 compose the viral surface, whereas VP4 lies interior at the capsid͞RNA interface. To examine the solution structure of HRV14, we used protein mass mapping, limited proteolysis with mass spectrometry (3, 4). Here the site-specific proteolytic degradation of a protein results in a set of digestion fragments which are subsequently mass analyzed by matrix-assisted laser desorption͞ionization mass spectrometry (MALDI-MS). The resulting digestion fragments provide structural information concerning the individual capsid proteins as well as their proteinprotein interactions, because available cleavage sites are dependent on both the tertiary and quaternary protein structure. For instance, cleavage sites residing on the exterior of the virus will be most accessible to the enzyme and therefore be among the first digestion fr...
The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.