A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ''rainforest crisis'' to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. [Formula: see text]C-inferred vegetation changes confirm a prominent and abrupt appearance of C plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. [Formula: see text]D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.
Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33% and 20% higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951-2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924-2008 using the dates when daily mean air temperature exceeded 5°C (start) and 10°C (end). Diatom silica deposition showed a significant (p<0.0001) inverse linear relationship with the modeled spring mixing duration (R² = 0.36) and the spring warming duration (R² = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005) is excluded (R² = 0.59 and R² = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.
The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes.
We revise the conceptual model of calcite varves and present, for the first time, a dual lake monitoring study in two alkaline lakes providing new insights into the seasonal sedimentation processes forming these varves. The study lakes, Tiefer See in NE Germany and Czechowskie in N Poland, have distinct morphology and bathymetry, and therefore, they are ideal to decipher local effects on seasonal deposition. The monitoring setup in both lakes is largely identical and includes instrumental observation of (i) meteorological parameters, (ii) chemical profiling of the lake water column including water sampling, and (iii) sediment trapping at both bi‐weekly and monthly intervals. We then compare our monitoring data with varve micro‐facies in the sediment record. One main finding is that calcite varves form complex laminae triplets rather than simple couplets as commonly thought. Sedimentation of varve sub‐layers in both lakes is largely dependent on the lake mixing dynamics and results from the same seasonality, commencing with diatom blooms in spring turning into a pulse of calcite precipitation in summer and terminating with a re‐suspension layer in autumn and winter, composed of calcite patches, plant fragments and benthic diatoms. Despite the common seasonal cycle, the share of each of these depositional phases in the total annual sediment yield is different between the lakes. In Lake Tiefer See calcite sedimentation has the highest yields, whereas in Lake Czechowskie, the so far underestimated re‐suspension sub‐layer dominates the sediment accumulation. Even in undisturbed varved sediments, re‐suspended material becomes integrated in the sediment fabric and makes up an important share of calcite varves. Thus, while the biogeochemical lake cycle defines the varves’ autochthonous components and micro‐facies, the physical setting plays an important role in determining the varve sub‐layers’ proportion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.