The continental shelves of the Arctic Ocean and surrounding seas contain large stocks of organic matter (OM) and methane (CH4), representing a potential ecosystem feedback to climate change not included in international climate agreements. We performed a structured expert assessment with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental shelves exposed during the last glacial period). Experts estimated that the subsea permafrost domain contains ∼560 gigatons carbon (GtC; 170–740, 90% confidence interval) in OM and 45 GtC (10–110) in CH4. Current fluxes of CH4 and carbon dioxide (CO2) to the water column were estimated at 18 (2–34) and 38 (13–110) megatons C yr−1, respectively. Under Representative Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt CO2-equivalent (CO2e) by 2100 (14–110) and 190 Gt CO2e by 2300 (45–590), with ∼30% fewer emissions under RCP2.6. The range of uncertainty demonstrates a serious knowledge gap but provides initial estimates of the magnitude and timing of the subsea permafrost climate feedback.
A detailed mathematical model is used to predict local and effluent properties within an axisymmetric, entrained-flow gasifier. Laboratory experiments were conducted to provide local properties for four coal types from a gasifier operating at near-atmospheric pressure. Effects of selected model parameters and test variables were examined and compared with measurements in most cases. The comparison of predictions and measurements provides the first evaluation of capabilities and limitations of a comprehensive model for entrained-flow gasifiers.B. W. Brown is presently with EGBrG. Idaho Falls, Idaho.
Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological framework to ~12,000 water samples collected by the U.S. Environmental Protection Agency from streams and lakes across the contiguous U.S. to identify spatial and temporal patterns in nutrient concentrations and leverage (an indicator of flux). For the contiguous U.S. and within ecoregions, we quantified trends for sites sampled repeatedly from 2000 to 2019, the persistence of spatial patterns over that period, and the patch size of nutrient sources and sinks. While we observed various temporal trends across ecoregions, the spatial patterns of nutrient and carbon concentrations in streams were persistent across and within ecoregions, potentially because of historical nutrient legacies, consistent nutrient sources, and inherent differences in nutrient removal capacity for various ecosystems. Watersheds showed strong critical source area dynamics in that 2–8% of the land area accounted for 75% of the estimated flux. Variability in nutrient contribution was greatest in catchments smaller than 250 km2 for most parameters. An ensemble of four machine learning models confirmed previously observed relationships between nutrient concentrations and a combination of land use and land cover, demonstrating how human activity and inherent nutrient removal capacity interactively determine nutrient balance. These findings suggest that targeted nutrient interventions in a small portion of the landscape could substantially improve water quality at continental scales. We recommend a dual approach of first prioritizing the reduction of nutrient inputs in catchments that exert disproportionate influence on downstream water chemistry, and second, enhancing nutrient removal capacity by restoring hydrological connectivity both laterally and vertically in stream networks.
Abstract. Repeated sampling of spatially distributed river chemistry can be used to assess the location, scale, and persistence of carbon and nutrient contributions to watershed exports. Here, we provide a comprehensive set of water chemistry measurements and ecohydrological metrics describing the biogeochemical conditions of permafrost-affected Arctic watersheds. These data were collected in watershed-wide synoptic campaigns in six stream networks across northern Alaska. Three watersheds are associated with the Arctic Long-Term Ecological Research site at Toolik Field Station (TFS), which were sampled seasonally each June and August from 2016 to 2018. Three watersheds were associated with the National Park Service (NPS) of Alaska and the U.S. Geological Survey (USGS) and were sampled annually from 2015 to 2019. Extensive water chemistry characterization included carbon species, dissolved nutrients, and major ions. The objective of the sampling designs and data acquisition was to characterize terrestrial–aquatic linkages and processing of material in stream networks. The data allow estimation of novel ecohydrological metrics that describe the dominant location, scale, and overall persistence of ecosystem processes in continuous permafrost. These metrics are (1) subcatchment leverage, (2) variance collapse, and (3) spatial persistence. Raw data are available at the National Park Service Integrated Resource Management Applications portal (O'Donnell et al., 2021, https://doi.org/10.5066/P9SBK2DZ) and within the Environmental Data Initiative (Abbott, 2021, https://doi.org/10.6073/pasta/258a44fb9055163dd4dd4371b9dce945).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.