There are many clinical situations in which a large tissue mass is required to replace tissue lost to surgical resection (e.g., mastectomy). It is possible that autologous cell transplantation on biodegradable polymer matrices may provide a new therapy to engineer large tissue which can be used to treat these patients. A number of challenges must be met to engineer a large soft tissue mass. These include the design of (1) a structural framework to maintain a space for tissue development, (2) a space-filling matrix which provides for localization of transplanted cells, and (3) a strategy to enhance vascularization of the forming tissue. In this paper we provide an overview of several technologies which are under development to address these issues. Specifically, support matrices to maintain a space for tissue development have been fabricated from polymers of lactide and glycolide. The ability of these structures to resist compressive forces was regulated by the ratio of lactide to glycolide in the polymer. Smooth muscle cell seeding onto polyglycolide fiber-based matrices has been optimized to allow formation of new tissues in vitro and in vivo. Finally, polymer microsphere drug delivery technology is being developed to release vascular endothelial growth factor (VEGF), a potent angiogenic molecule, at the site of tissue formation. This strategy, which combines several different technologies, may ultimately allow for the engineering of large soft tissues.
Chacko, et al.: Surfactant Coating on Brain Targeting NanoparticlesTargeting of drugs to brain is one of the most challenging issues for pharmaceutical research as bloodbrain barrier acts as an insurmountable obstacle for the passage of systemically delivered therapeutics and the brain extracellular matrix attributes to poor distribution of locally delivered drugs. Amongst various invasive or non-invasive methods to warrant blood-brain barrier, nanoparticle is one of promising ways to administer central nervous system drugs. The concept of nanoparticle-based drug targeting make a tremendous progress and gigantic era to overcome the above limitations with improved drug efficacy and reduced drug toxicity. In recent years, new strategies of surfactant coating of biodegradable polymeric nanoparticles, which differ from conventional methodologies of brain targeting, have emerged at the forefront of medical science. The non-ionic surfactant, polysorbate 80 as a coating material promises an unparalleled opportunity for enhancement of brain targeting of colloidal particles. The aim of this review is to evaluate the potential application of surfactant-coated nanoparticles as drug carrier system for various central nervous system diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.