The potential energy-saving benefit for vehicles when travelling in a ‘platoon’ formation results from the reduction in total aerodynamic drag which may result from the interaction of bluff bodies in close-proximity. Early investigations of platooning, prompted by problems of congestion, had shown the potential for drag reduction but was not pursued. More recently, technologies developed for connected-autonomous vehicle control have provided a renewed interest in platooning particularly within the commercial vehicle industry. To date, most aerodynamics-based considerations of platooning have been conducted to assess the sensitivity of drag-saving to vehicle spacing and were based on formations of identically shaped constituents. In this study, the interest was the sensitivity of drag-saving to the shape of the individual platoon constituents. A new reference car, the Resnick model, was specially designed to include front and rear-end add-on sections to make distinct changes in profile form and simulate large-scale body morphing. The results of wind tunnel tests on small-scale models suggested that current trends in low-drag styling may not provide the ideal shape for platoon constituent members and that optimised forms are likely to be dependent upon position in the platoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.