For decades, Channel Evolution Models have provided useful templates for understanding morphological responses to disturbance associated with lowering base level, channelization or alterations to the flow and/or sediment regimes. In this paper, two well‐established Channel Evolution Models are revisited and updated in light of recent research and practical experience. The proposed Stream Evolution Model includes a precursor stage, which recognizes that streams may naturally be multi‐threaded prior to disturbance, and represents stream evolution as a cyclical, rather than linear, phenomenon, recognizing an evolutionary cycle within which streams advance through the common sequence, skip some stages entirely, recover to a previous stage or even repeat parts of the evolutionary cycle. The hydrologic, hydraulic, morphological and vegetative attributes of the stream during each evolutionary stage provide varying ranges and qualities of habitat and ecosystem benefits. The authors' personal experience was combined with information gleaned from recent literature to construct a fluvial habitat scoring scheme that distinguishes the relative, and substantial differences in, ecological values of different evolutionary stages. Consideration of the links between stream evolution and ecosystem services leads to improved understanding of the ecological status of contemporary, managed rivers compared with their historical, unmanaged counterparts. The potential utility of the Stream Evolution Model, with its interpretation of habitat and ecosystem benefits includes improved river management decision making with respect to future capital investment not only in aquatic, riparian and floodplain conservation and restoration but also in interventions intended to promote species recovery. Copyright © 2012 John Wiley & Sons, Ltd.
River-wetland corridors form where a high degree of connectivity between the surface (rheic) and subsurface (hyporheic) components of streamflow creates an interconnected system of channels, wetlands, ponds, and lakes. River-wetland corridors occur where the valley floor is sufficiently wide to accommodate a laterally unconfined river planform that may feature morphologically complex, multi-threaded channels with vegetated bars, islands, and floodplains. River-wetland corridors can develop anywhere there is valley expansion along a drainage network, from the headwaters to estuaries or deltas, and they are found across all latitudes and within all biomes and hydroclimates. River-wetland corridors may be longitudinally continuous but are commonly interspersed with single-thread reaches in narrower portions of the valley. The development and persistence of river-wetland corridors is driven by combinations of geologic, biotic, and geomorphic processes that create a river environment that is diverse, heterogeneous, patchy, and dynamically stable, and within which patterns of flow, sediment features, and habitats shift continually. Hence, we describe these polydimensional river corridors as “kaleidoscope rivers.” Historically, river-wetland corridors were pervasive in wide, alluvial valley reaches, but their presence has been so diminished worldwide (due to a diverse range of anthropogenic activities and impacts) that the general public and even most river managers are unaware of their former pervasiveness. Here, we define river-wetland corridors as a river type; review paleoenvironmental and historical records to establish their past ubiquity; describe the geologic, biotic, and geomorphic processes responsible for their formation and persistence; and provide examples of river-wetland corridor remnants that still survive. We close by highlighting the significance of the diverse river functions supported by river-wetland corridors, the consequences of diminution and neglect of this river type, and the implications for river restoration.
Degraded floodplains and valley floors are restored with the goal of enhancing habitat for native fish and aquatic-riparian biota and the protection or improvement of water quality. Recent years have seen a shift toward “process-based restoration” that is intended to reestablish compromised ecogeomorphic processes resulting from site- or watershed-scale degradation. One form of process-based restoration has developed in the Pacific Northwest, United States, that is intended to reconnect rivers to their floodplains by slowing down flows of sediment, water, and nutrients to encourage lateral and vertical connectivity at base flows, facilitating development of dynamic, self-forming, and self-sustaining river-wetland corridors. Synergies between applied practices and the theoretical work of Cluer and Thorne in 2014 have led this form of restoration to be referred to regionally as restoration to a Stage 0 condition. This approach to rehabilitation is valley scale, rendering traditional monitoring strategies that target single-thread channels inadequate to capture pre- and post-project site conditions, thus motivating the development of novel monitoring approaches. We present a specific definition of this new type of rehabilitation that was developed in collaborative workshops with practitioners of the approach. Further, we present an initial synthesis of results from monitoring activities that provide a foundation for understanding the effects of this approach of river rehabilitation on substrate composition, depth to groundwater, water temperature, macroinvertebrate richness and abundance, secondary macroinvertebrate production, vegetation conditions, wood loading and configuration, water inundation, flow velocity, modeled juvenile salmonid habitat, and aquatic biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.