The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103+ dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8+ T cells. CD103+ DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PDL1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the cytokine Flt3L followed by intratumoral poly I:C injections expanded and activated CD103+ DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103+ DCs in tumors limits checkpoint blockade efficacy and Flt3L-poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.
Although, much progress has been made in our understanding of DC ontogeny
and function, the transcriptional regulation of DC lineage commitment and
functional specialization
in vivo
is poorly understood. We
performed a comprehensive comparative analysis of CD8+, CD103+,
CD11b+, and plasmacytoid DC subsets and the recently identified
Macrophage DC precursors and Common DC precursors across the entire immune
system. Here we characterize candidate transcriptional activators involved in
myeloid progenitor commitment to the DC lineage and predicted regulators of DC
functional diversity in tissues. We identify a molecular signature that
distinguishes tissue DC from macrophages. We also identify a transcriptional
program expressed specifically during steady-state tissue DC migration to the
draining lymph nodes that may control tolerance to self-tissue antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.