BACKGROUND The use of radioactive microspheres (RM) for the measurement of regional myocardial blood flow (RMBF) is limited and inaccessible to many investigators due to radiation safety concerns and radioactive waste disposal problems. Therefore, a new method for the measurement of RMBF using colored microspheres (CM) was developed. METHODS AND RESULTS Polystyrene spheres (diameter, 15 +/- 0.1 [SD] micron; density, 1.09 g/ml) were dyed with one of five colors. With the injection of CM into the left atrium or into a coronary perfusion line, RMBF and its distribution can be determined. CM are extracted from the myocardium and blood by digestion with potassium hydroxide and subsequent microfiltration. The dyes are then recovered from the CM within a defined volume of a solvent, and their concentrations are determined by spectrophotometry. The separation of composite absorbance spectra by spectrophotometry with the CM technique was as good as the separation of energy spectra by a gamma-counter using the RM technique. Leaching of dye from the CM was less than 0.1% during a 2-month period in vitro. Significant leaching of dye from the microspheres also did not occur during 8 hours in the blood and myocardium of four anesthetized dogs in vivo. For further validation of this method, pairs of CM and RM (15.5 +/- 0.1 [SD] microns) were simultaneously injected under five different RMBF conditions (range, 0-10 ml/[min.g]) into the left anterior descending coronary artery of four anesthetized pigs, with coronary inflow as a flow reference, or into the left atrium of four anesthetized dogs using aortic blood withdrawal as a reference. The relation between RMBF determined by CM and RM was CM = 0.01 + 1.00.RM (r = 0.98, n = 1,080 data points) in the pigs, and CM = -0.19 + 0.92.RM (r = 0.97, n = 1,813 data points) in the dogs. CONCLUSIONS Measurement of RMBF with CM yields values very similar to those of RM. Their use is less expensive and avoids all the disadvantages related to radioactivity, thus offering an alternative method for as many as five RMBF measurements in a single experiment.
A new chemical class of potent DPP-4 inhibitors structurally derived from the xanthine scaffold for the treatment of type 2 diabetes has been discovered and evaluated. Systematic structural variations have led to 1 (BI 1356), a highly potent, selective, long-acting, and orally active DPP-4 inhibitor that shows considerable blood glucose lowering in different animal species. 1 is currently undergoing clinical phase IIb trials and holds the potential for once-daily treatment of type 2 diabetics.
BackgroundThis study investigated effects on cardiovascular parameters during anaesthesia with isoflurane (ISO, 2–3 Vol%), ketamine-xylazine (KX, 100 mg•kg−1 + 5 mg•kg−1) or a combination of medetomidine-midazolam-fentanyl (MMF, 0.15 mg•kg−1 + 2.0 mg•kg−1 + 0.005 mg•kg−1) in rats throughout induction, maintenance and recovery from anaesthesia. Rats were instrumented with a telemetric system for the measurement of systolic, diastolic and mean arterial pressure (SAP, DAP, MAP), pulse pressure (PP), heart rate (HR) and core body temperature (BT). The parameters were continuously measured before, during and after each type of anaesthesia. Forty minutes after induction, ISO delivery was terminated and MMF was antagonized with atipamezole-flumazenil-naloxone (AFN, 0.75 mg•kg−1 + 0.2 mg•kg−1 + 0.12 mg•kg−1) whereas KX was not antagonized.ResultsDifferences were observed between anaesthesias with KX (301 min) lasting much longer than MMF (45 min) and ISO (43 min). HR in ISO (truex¯ = 404 ± 25 bpm) increased during the time of surgical tolerance whereas a HR decrease was observed in KX (truex¯ = 255 ± 26 bpm) and MMF (truex¯ = 209 ± 24 bpm). In ISO (MAP during time of surgical tolerance: truex¯ = 89 ± 12.3 mmHg) and KX (MAP during wake-up period: truex¯ = 84 ± 8.5 mmHg) mild hypotensive values were observed, whereas blood pressure (BP) in MMF (MAP during time of surgical tolerance: truex¯ = 138 ± 9.9 mmHg) increased. Despite keeping animals on a warming pad, a loss of BT of about 1°C was seen in all groups. Additionally, we observed a peaked increase of HR (truex¯ = 445 ± 20 bpm) during the wake-up period with ISO and an increase of PP (truex¯ = 59 ± 8.5 mmHg) in MMF during the time of surgical tolerance.ConclusionThe anaesthesias influenced very differently the cardiovascular parameters measured in Wistar rats. ISO caused mild hypotension and increased HR whereas MMF produced a marked hypertension and a significant decrease of HR. The slightest alterations of BP, HR and BT were observed using KX, but the long wake-up and recovery period suggest the need for prolonged monitoring.
Defining an appropriate and efficient assessment of drug‐induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc‐prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14‐based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B‐based “double‐negative” nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high‐dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double‐negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.
For an appropriate extrapolation to patients with peripheral arterial obstructive disease, we tested the efficacy of monocyte chemoattractant protein 1 (MCP-1) treatment in a porcine hindlimb ligation model. In 40 minipigs, a femoral artery ligation was performed. Control animals were examined immediately after ligation (n = 4) or after 2 wk of intra-arterial infusion of PBS (n = 11). A second group of animals was evaluated after intra-arterial infusion of 2.0 microg/h of MCP-1 for 48 h (followed by 12 days of PBS; n = 13) or 2 wk continuously (n = 12). In the terminal experiment after 2 wk, resting flow to the leg and peripheral arterial pressures were assessed without vasodilatation. Subsequently, vascular conductance was determined by using a pump-driven extracorporal circulation during maximal vasodilatation. The results showed that resting blood flow to the hindlimb was 53% of the normal after 2 wk of infusion of PBS, compared with 81% in both MCP-1 treatment groups (P < 0.05). Collateral conductance was 645 +/- 346 ml x min(-1) x mmHg(-1) after 2 wk of infusion with PBS, compared with 1,070 +/- 530 and 1,158 +/- 535 ml x min(-1) x mmHg(-1) after 48 h and 2 wk treatment with MCP-1, respectively (P < 0.05). Modulation of the process of arteriogenesis is feasible in this large animal model via intra-arterial infusion of the Cys-Cys-chemokine MCP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.