The impact of PEGylation on the pharmacokinetics and biodistribution of (3)H-labeled poly l-lysine dendrimers has been investigated after intravenous administration to rats. The volumes of distribution, clearance and consequently the plasma half-lives of the PEGylated dendrimers were markedly dependent on the total molecular weight of the PEGylated dendrimer, but were not specifically affected by the PEG chain length alone. In general, the larger dendrimer constructs (i.e. >30 kDa) had reduced volumes of distribution, were poorly renally cleared and exhibited extended elimination half-lives ( t 1/2 1-3 days) when compared to the smaller dendrimers (i.e. <20 kDa) which were rapidly cleared from the plasma principally into the urine ( t 1/2 1-10 h). At later time points the larger dendrimers concentrated in the organs of the reticuloendothelial system (liver and spleen); however, the absolute extent of accumulation was low. Size exclusion chromatography of plasma and urine samples revealed that the PEGylated dendrimers were considerably more resistant to biodegradation in vivo than the underivatized poly l-lysine dendrimer cores. The results suggest that the size of PEGylated poly l-lysine dendrimer complexes can be manipulated to optimally dictate their pharmacokinetics, biodegradation and bioresorption behavior.
Dendrimers have potential for delivering chemotherapeutic drugs to solid tumors via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterized the effect on dendrimer disposition of conjugating R-carboxyl protected methotrexate (MTX) to a series of PEGylated 3 H-labeled poly-L-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG 570 dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG 1100 dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumors, and comparative disposition data in both rats (1 to 2% dose/g in tumor) and mice (11% dose/g in tumor) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-L-lysine dendrimers as long-circulating vectors for the delivery and tumor-targeting of hydrophobic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.