Climate change has had a significant impact globally on the timing of ecological events such as reproduction and migration in many species. Here, we examined the phenology of reproductive migrations in 10 amphibian species at a wetland in South Carolina, USA using a 30 year dataset. We show for the first time that two autumn-breeding amphibians are breeding increasingly later in recent years, coincident with an estimated 1.28C increase in local overnight air temperatures during the September through February pre-breeding and breeding periods. Additionally, two winter-breeding species in the same community are breeding increasingly earlier. Four of the 10 species studied have shifted their reproductive timing an estimated 15.3 to 76.4 days in the past 30 years. This has resulted in rates of phenological change that range from 5.9 to 37.2 days per decade, providing examples of some of the greatest rates of changing phenology in ecological events reported to date. Owing to the opposing direction of the shifts in reproductive timing, our results suggest an alteration in the degree of temporal niche overlap experienced by amphibian larvae in this community. Reproductive timing can drive community dynamics in larval amphibians and our results identify an important pathway by which climate change may affect amphibian communities.
Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.