Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P and P) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P), as follows: P = 1.02 P + 0.11 (r = 0.96) and P = 0.28 P + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. RSNA, 2017.
The MCP technique was validated in a swine animal model and has the potential to be used for accurate, vessel-specific assignment of LCA and RCA perfusion territories in both the left and right ventricular myocardium using CT angiography data.
Purpose: To evaluate the accuracy of a low‐dose, first‐pass‐analysis (FPA) dynamic computed tomography angiography and perfusion (CTAP) technique, for whole‐organ anatomical and functional assessment of coronary artery disease (CAD). Methods: An angioplasty balloon was advanced into the left anterior descending (LAD) coronary artery of five swine (35–45 kg) to induce several levels of stenosis at maximal hyperemia (intracoronary adenosine, 240 µg/min). Reference fluorescence microspheres and intravenous contrast (370 mg/mL iodine, 25 mL, 7 mL/s) were injected centrally and dynamic imaging was performed using a 320‐slice CT scanner at 100 kVp and 200 mA. Twenty volume scans were acquired per stenosis level to capture complete aortic and myocardial enhancement curves, but only two volume scans were used for whole‐organ dynamic FPA CTAP measurement. All CTAP measurements in the LAD were compared to the reference microsphere perfusion measurements using linear regression, concordance correlation, and Bland‐Altman analysis. Results: The result of dynamic FPA CTAP measurement in the LAD was in good agreement with the reference microsphere perfusion measurement (P_CTAP = 1.01 P_MICRO + 0.16, R2 = 0.95). The root mean square error (RMSE) and difference (RMSD) of measurement were 0.51 mL/min/g and 0.47 mL/min/g, respectively. Bland‐Altman analysis demonstrated negligible systematic measurement bias. Additionally, the concordance correlation coefficient (CCC) was found to be ρ = 0.97, indicating excellent agreement between dynamic FPA CTAP measurement and the reference microsphere perfusion measurement. Lastly, the effective dose of the proposed technique using the “simulated” two‐volume scan CTAP acquisition protocol was 2.6 mSv; much lower than the ∼10 mSv effective dose of current dynamic CTP techniques alone. Conclusion: The results indicate the potential for significant improvements in CAD assessment through low‐dose, quantitative dynamic FPA CTAP. Such improvements are afforded through whole‐organ CT scanning technology, and have the potential to improve patient outcomes and lead to healthier patient lives. Conflict of Interest (only if applicable): Grant funding from Toshiba America Medical Systems.
Purpose: To evaluate the accuracy of a patient‐specific coronary perfusion territory assignment algorithm that uses CT angiography (CTA) and a minimum‐cost‐path approach to assign coronary perfusion territories on a voxel‐by‐voxel basis for determination of myocardial mass at risk. Methods: Intravenous (IV) contrast (370 mg/mL iodine, 25 mL, 7 mL/s) was injected centrally into five swine (35–45 kg) and CTA was performed using a 320‐slice CT scanner at 100 kVp and 200 mA. Additionally, a 4F catheter was advanced into the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) and contrast (30 mg/mL iodine, 10 mL, 1.5 mL/s) was directly injected into each coronary artery for isolation of reference coronary perfusion territories. Semiautomatic myocardial segmentation of the CTA data was then performed and the centerlines of the LAD, LCX, and RCA were digitally extracted through image processing. Individual coronary perfusion territories were then assigned using a minimum‐cost‐path approach, and were quantitatively compared to the reference coronary perfusion territories. Results: The results of the coronary perfusion territory assignment algorithm were in good agreement with the reference coronary perfusion territories. The average volumetric assignment error from mitral orifice to apex was 5.5 ± 1.1%, corresponding to 2.1 ± 0.7 grams of myocardial mass misassigned for each coronary perfusion territory. Conclusion: The results indicate that accurate coronary perfusion territory assignment is possible on a voxel‐by‐voxel basis using CTA data and an assignment algorithm based on a minimum‐cost‐path approach. Thus, the technique can potentially be used to accurately determine patient‐specific myocardial mass at risk distal to a coronary stenosis, improving coronary lesion assessment and treatment. Conflict of Interest (only if applicable): Grant funding from Toshiba America Medical Systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.