Transportation of hazardous materials, and particularly radioactive wastes, on public highways has become an important risk management issue. The unfavorability of public attitudes regarding hazardous and nuclear wastes signals the potential for strong public opposition to programs for transporting these materials. This paper presents the results of a survey conducted to assess public reactions to a long-term nuclear waste transport program planned to follow a route through a portion of rural Oregon. The survey assessed a number of key risk perception issues, including perceived health and safety risks of nuclear waste transport, relative risks of transport vs. storage at an existing site, trust in state officials, and satisfaction with life in communities along the transport route. The survey identified a number of attitudes and concerns that need to be understood and considered by those in charge of designing and implementing the waste-transportation program.
This paper briefly describes a report which has been developed to enable protective action guidance to be determined for transportation accidents involving radioactive material. The protective action guide uses data from on-scene observations as input to a series of simple flow charts leading to protective action recommendations. Where the necessary data is unavailable or unknown, the guide uses the assumptions and results found in the authors' worst case hazards analysis report.
Self-shielded 137Cs irradiators have been used for many years to irradiate blood products to prevent graft vs. host disease and to irradiate cells and small animals in research. A report by the National Academy of Sciences recommends that careful consideration be given to replacement of 137Cs irradiators with x-ray irradiators. Several manufacturers and users of x-ray irradiators were contacted to determine costs of replacing and maintaining 137Cs irradiators with x-ray units and to assess users' experience with x-ray irradiators. Purchase costs of x-ray units are similar to 137Cs irradiators, but maintenance costs are significantly higher if annual service contracts are used. Performance of the two irradiator types appears to be equivalent, but in some cases x-ray irradiations may need to be performed in multiple configurations to achieve adequate uniformity in dose. No literature reports were found that evaluated the biological effectiveness of x rays vs. 137Cs gamma rays; therefore, a careful study should be conducted to determine the biological effectiveness of x rays vs. 137Cs gamma rays for biological responses relevant to transfusion medicine and immunological research. Throughput may be problematic for large transfusion medicine programs, and back-up plans may be necessary in case the x-ray unit needs to be taken out of service for extended maintenance. Disposition of a 137Cs irradiator will add to the cost of replacement with an x-ray unit, but disposal may be possible through the U.S. Department of Energy's Off-Site Source Recovery Program.
Experience from past nuclear and radiological emergencies shows that placing the radiological health hazard in perspective and having a definition of "safe" are required in order to prevent members of the public, those responsible for protecting the public (i.e., decision makers), and others from taking inappropriate and damaging actions that are not justified based on the radiological health hazard. The principle concerns of the public during a severe nuclear power plant or spent fuel pool emergency are "Am I safe?" and "What should I do to be safe?" However, these questions have not been answered to the satisfaction of the public, despite various protective actions being implemented to ensure their safety. Instead, calculated doses or various measured quantities (e.g., ambient dose rate or radionuclide concentrations) are used to describe the situation to the public without placing them into perspective in terms of the possible radiological health hazard, or if they have, it has been done incorrectly. This has contributed to members of the public taking actions that do more harm than good in the belief that they are protecting themselves. Based on established international guidance, this paper provides a definition of "safe" for the radiological health hazard for use in nuclear or radiological emergencies and a system for putting the radiological health hazard in perspective for quantities most commonly measured after a release resulting from a severe emergency at a light water reactor or its spent fuel pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.