A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-stop cycles are performed on the bearing at a temperature of 425°C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.
The vibration signals from sensors monitoring the activity of individual bearings in a power train unit may be linear instantaneous mixtures of vibrations generated by various dynamic components. Generally, an exact physical model describing the mixing process and the contribution of each dynamic component to the received sensor signal is not available. Vibration source signals from defective bearings often overlap in time and frequency, and, as such, the direct use of time- and frequency-domain methods may result in erroneous diagnostic information. This paper implements blind source separation (BSS) to demix sensor signals into correctly identifiable vibration source signals without the need of the vibration path property and sensor layout. Experimental vibration data from spalled, corroded, and healthy rotorcraft bearings are used with five representative BSS algorithms. The separation accuracy of these algorithms is then compared using various performance metrics. Results show that despite the inherent statistical dependence and near Gaussianity, it is possible to isolate vibration sources from mixed sensor signals using second- and higher-order statistics of the signals. The paper also identifies the limitations of the BSS technique and provides a remedy and recommendation for its implementation in rotorcraft bearing fault detection.
A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-stop cycles are performed on the bearing at a temperature of 425°C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.