ZnO has been well-known as a significant photocatalyst material due to its high surface area, efficient charge transport, and superior photosensitivity. Even though photocatalysis using bare ZnO NRs is useful in pollutant remediation, two main drawbacks scale down their performance as photocatalysts. First, ZnO NRs absorb mainly the UV light, which compromises a small portion of the solar spectrum, and second, the high recombination rate in the ZnO NRs prevents the path of electron-hole outward and then reduces the photocatalysis efficiency. In this work, ZnO-NRs, ZnO-NRs/Graphene Oxide (GO), and ZnO-NRs/Reduced Graphene Oxide (rGO) array composites were vertically grown on conductive glass substrates of SnO2:F (FTO). The films were synthesized by hydrothermal method using ZnO seed layers deposited by spray pyrolysis technique. The nanosheets of GO and rGO were anchored onto the surface of the as-prepared ZnO-NRs by using the spray deposition technique (SDT). The photocatalytic activity of these materials was studied by analyzing the degradation of methylene orange (MO) in an aqueous solution under ultraviolet light, and we found that the decoration of ZnO-NRs with nanosheets of GO and rGO resulted in a significant enhancement of the photocatalytic degradation efficiency, where ZnO-NRs/rGO are more efficient than ZnO-NRs/GO and the latter better than pure ZnO-NRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.