Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.
Cone-beam computed tomography (CBCT) has been clinically used to verify patient position and to localize the target of treatment in image-guided radiation therapy (IGRT). However, when the chest and the upper abdomen are scanned, respiratory-induced motion blurring limits the utility of CBCT. In order to mitigate this blurring, respiratory-gated CBCT, i.e. 4D CBCT, was introduced. In 4D CBCT, the cone-beam projection data sets acquired during a gantry rotation are sorted into several respiratory phases. In these gated reconstructions, the number of projections for each respiratory phase is significantly reduced. Consequently, undersampling streaking artifacts are present in the reconstructed images, and the image contrast resolution is also significantly compromised. In this paper, we present a new method to simultaneously achieve both high temporal resolution (~100 ms) and streaking artifact-free image volumes in 4D CBCT. The enabling technique is a newly proposed image reconstruction method, i.e. prior image constrained compressed sensing (PICCS), which enables accurate image reconstruction using vastly undersampled cone-beam projections and a fully sampled prior image. Using PICCS, a streak-free image can be reconstructed from 10-20 cone-beam projections while the signal-to-noise ratio is determined by a denoising feature of the selected objective function and by the prior image, which is reconstructed using all of the acquired cone-beam projections. This feature of PICCS breaks the connection between the temporal resolution and streaking artifacts' level in 4D CBCT. Numerical simulations and experimental phantom studies have been conducted to validate the method.
Over the past two decades, rapid system and hardware development of x-ray computed tomography (CT) technologies has been accompanied by equally exciting advances in image reconstruction algorithms. The algorithmic development can generally be classified into three major areas: analytical reconstruction, model-based iterative reconstruction, and application-specific reconstruction. Given the limited scope of this chapter, it is nearly impossible to cover every important development in this field; it is equally difficult to provide sufficient breadth and depth on each selected topic. As a compromise, we have decided, for a selected few topics, to provide sufficient high-level technical descriptions and to discuss their advantages and applications.
Cone-beam computed tomography (CBCT) using an “on-board” x-ray imaging device integrated into a radiation therapy system has recently been made available for patient positioning, target localization, and adaptive treatment planning. One of the challenges for gantry mounted image-guided radiation therapy (IGRT) systems is the slow acquisition of projections for cone-beam CT (CBCT), which makes them sensitive to any patient motion during the scans. Aiming at motion artifact reduction, four-dimensional CBCT (4D CBCT) techniques have been introduced, where a surrogate for the target's motion profile is utilized to sort the cone-beam data by respiratory phase. However, due to the limited gantry rotation speed and limited readout speed of the on-board imager, fewer than 100 projections are available for the image reconstruction at each respiratory phase. Thus, severe undersampling streaking artifacts plague 4D CBCT images. In this paper, the authors propose a simple scheme to significantly reduce the streaking artifacts. In this method, a prior image is first reconstructed using all available projections without gating, in which static structures are well reconstructed while moving objects are blurred. The undersampling streaking artifacts from static structures are estimated from this prior image volume and then can be removed from the phase images using gated reconstruction. The proposed method was validated using numerical simulations, experimental phantom data, and patient data. The fidelity of stationary and moving objects is maintained, while large gains in streak artifact reduction are observed. Using this technique one can reconstruct 4D CBCT datasets using no more projections than are acquired in a 60 s scan. At the same time, a temporal gating window as narrow as 100 ms was utilized. Compared to the conventional 4D CBCT reconstruction, streaking artifacts were reduced by 60% to 70%.
In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fanbeam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.