Aging is the most prominent risk factor for Parkinson's disease. Yet, consensus of how advancing age may predispose the dopamine (DA) system to parkinsonism is lacking. Three age ranges of female rhesus monkeys, 8-9, 15-17, and 21-31 years, received unilateral DA depletion with intracarotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Morphological and biochemical analyses of DA-depleted and intact hemispheres revealed three primary findings: (1) The intact striatum exhibited age-related declines in dopamine (DA) and homovanillic acid (HVA) that were present by middle age; (2) In the MPTP-treated striatum, the compensatory increase in DA activity was absent in old monkeys; and (3) Age-associated morphological changes included declines in the density of tyrosine hydroxylase (TH) positive fibers in striatum, decreased nigral soma size, and optical density of TH, but no significant loss of neurons. These findings suggest that aging produces changes in the nigrostriatal DA system that approach the threshold for expression of parkinsonian features, and that progressive impairment of plasticity may be central to the role of aging in development of parkinsonism.
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief.
We examined the behavioral and morphological correlates of the response to a single intrastriatal dispersed cell graft of fetal rat ventral mesencephalic tissue in male Fischer-344 rats of varying age (4, 17, and 24-26 months old) and history of mesostriatal dopamine (DA) depletion (1 or 14 months). Our goal was to determine the impact of advancing age and duration of DA depletion in the host on DA graft viability and function. The findings can be summarized as follows. (1) Fetal DA neuron grafts that were effective in completely ameliorating amphetamine-induced rotational behavior in young rats with short-term lesions were virtually without effect in aged rats with long-term lesions. Middle-aged rats with long-term lesions responded to these grafts with partial behavioral recovery. (2) Age of the host at the time of transplantation, and not duration of DA depletion, was the primary determinant of response to DA grafts. (3) Diminished efficacy of grafts in lesioned aging rats was related to decreased survival and neurite extension of transplanted DA neurons. (4) Co-grafts of DA neurons with Schwann cells as a source of neurotrophic support improved the behavioral outcome of grafts in aged lesioned rats. These findings support the view that the DA-depleted striatum of aged rats is an impoverished environment for survival, growth, and function of DA grafts. Consistent with this view, local supplementation of the neurotrophic environment of grafted DA neurons with products of co-grafted Schwann cells, a demonstrated source of neurotrophic activity for embryonic DA neurons, improved graft outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.