Human pathophysiology is occasionally too complex for unaided hypothetical-deductive reasoning and the isolated application of additive or linear statistical methods. Clustering algorithms use input data patterns and distributions to form groups of similar patients or diseases that share distinct properties. Although clinicians frequently perform tasks that may be enhanced by clustering, few receive formal training and clinician-centered literature in clustering is sparse. To add value to clinical care and research, optimal clustering practices require a thorough understanding of how to process and optimize data, select features, weigh strengths and weaknesses of different clustering methods, select the optimal clustering method, and apply clustering methods to solve problems. These concepts and our suggestions for implementing them are described in this narrative review of published literature. All clustering methods share the weakness of finding potential clusters even when natural clusters do not exist, underscoring the importance of applying data-driven techniques as well as clinical and statistical expertise to clustering analyses. When applied properly, patient and disease phenotype clustering can reveal obscured associations that can help clinicians understand disease pathophysiology, predict treatment response, and identify patients for clinical trial enrollment.
End-stage kidney disease (ESKD), the most advanced stage of chronic kidney disease (CKD), requires renal replacement therapy or kidney transplant to sustain life. To accomplish durable dialysis access, the creation of an arteriovenous fistula (AVF) has emerged as a preferred approach. Unfortunately, a significant proportion of patients that receive an AVF experience some form of hand dysfunction, however the mechanisms underlying these side effects are not understood. In this study, we utilized nuclear magnetic resonance (NMR) spectroscopy to investigate the muscle metabolome following iliac AVF placement in mice with CKD. To induce CKD, C57BL6J mice we fed an adenine-supplemented diet for three weeks and then randomized to receive AVF or Sham surgery. Two-weeks following surgery, the quadriceps muscles were rapidly dissected and snap frozen for metabolite extraction and subsequent NMR analysis. Principal component analysis demonstrated clear separation between groups, confirming a unique metabolome in mice that received an AVF. AVF creation resulted in reduced levels creatine, ATP, ADP, as well as increased levels of IMP and several tricarboxylic acid cycle metabolites suggesting profound energetic stress. Pearson correlation and multiple linear regression analyses identified several metabolites that were strongly linked to measures of limb function (grip strength, gait speed, mitochondrial respiration). In summary, AVF creation generates a unique metabolome profile in the distal skeletal muscle indicative of an energetic crisis and myosteatosis.
Short-term dietary restriction has been proposed as an intriguing pre-operative conditioning strategy designed to attenuate the surgical stress response and improve outcomes. However, it is unclear how this nutritional intervention influences the microbiome, which is known to modulate the systemic condition. Healthy individuals were recruited to participate in a four-day, 70% protein-restricted, 30% calorie-restricted diet, and stool samples were collected at baseline, after the restricted diet, and after resuming normal food intake. Taxonomy and functional pathway analysis was performed via shotgun metagenomic sequencing, prevalence filtering, and differential abundance analysis. High prevalence species were altered by the dietary intervention but quickly returned to baseline after restarting a regular diet. Composition and functional changes after the restricted diet included the decreased relative abundance of commensal bacteria and a catabolic phenotype. Notable species changes included Faecalibacterium prausnitzii and Roseburia intestinalis, which are major butyrate producers within the colon and are characteristically decreased in many disease states. The macronutrient components of the diet might have influenced these changes. We conclude that short-term dietary restriction modulates the ecology of the gut microbiome, with this modulation being characterized by a relative dysbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.