High dry friction requires intimate contact between two surfaces and is generally obtained using soft materials with an elastic modulus less than 10 MPa. We demonstrate that high-friction properties similar to rubberlike materials can also be obtained using microfiber arrays constructed from a stiff thermoplastic (polypropylene, 1 GPa). The fiber arrays have a smaller true area of contact than a rubberlike material, but polypropylene's higher interfacial shear strength provides an effective friction coefficient of greater than 5 at normal loads of 8 kPa. At the pressures tested, the fiber arrays showed more than an order of magnitude increase in shear resistance compared to the bulk material. Unlike softer materials, vertical fiber arrays of stiff polymer demonstrate no measurable adhesion on smooth surfaces due to high tensile stiffness.
We report the fabrication from a hard polymer of lamellar structures that act as base support planes for high-aspect ratio nanofiber arrays. We experimentally show that nanofiber arrays on lamellae can adhere to both planar and nonplanar surfaces, exhibiting 5 times greater shear strength on a 100 mum peak-to-peak grating than the arrays without the lamellar support structure. The observed behavior on nonplanar surfaces is attributed to the high compliance of the lamellar flaps. The compliance of the combined lamellae and nanofiber arrays is measured to be about 160 times higher than nanofiber arrays on a flat nonlamellar backing layer.
Colloidal-probe spherical indentation load-relaxation experiments with a probe radius of 3 μm are conducted on poly(ethylene glycol) (PEG) hydrogel materials to quantify their steady-state mechanical properties and time-dependent transport properties via a single experiment. PEG-based hydrogels are shown to be heterogeneous in both morphology and mechanical stiffness at this scale; a linear-harmonic interpolation of hyperelastic Mooney-Rivlin and Boussinesq flat-punch indentation models was used to describe the steady-state response of the hydrogels and determine upper and lower bounds for indentation moduli. Analysis of the transient load-relaxation response during displacement-controlled hold periods provides a means of extracting two time constants τ1 and τ2, where τ1 and τ2 are assigned to the viscoelastic and poroelastic properties, respectively. Large τ2 values at small indentation depths provide evidence of a non-equilibrium state characterized by a phenomenon that restricts poroelastic fluid flow through the material; for larger indentations, the variability in τ2 values decreases and pore sizes estimated from τ2 via indentation approach those measured via macroscopic swelling experiments. The contact probe methodology developed here provides a means of assessing hydrogel heterogeneity, including time-dependent mechanical and transport properties, and has potential implications in hydrogel biomedical and engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.