Prolactin (PRL) is a protein hormone which in humans is secreted by pituitary lactotrophs as well as by many normal and malignant non-pituitary sites. Many lines of evidence demonstrate that both circulating and locally produced PRL increase breast cancer (BC) growth and metastases and confer chemoresistance. Our objective was to identify and then characterize small molecules that block the tumorigenic actions of PRL in BC. We employed three cell-based assays in high throughput screening (HTS) of 51,000 small molecules and identified two small molecule inhibitors (SMIs), named SMI-1 and SMI-6. Both compounds bound to the extracellular domain (ECD) of the PRL receptor (PRLR) at 1–3 micromolar affinity and abrogated PRL-induced breast cancer cell (BCC) invasion and malignant lymphocyte proliferation. SMI-6 effectively reduced the viability of multiple BCC types, had much lower activity against various non-malignant cells, displayed high selectivity, and showed no apparent in vitro or in vivo toxicity. In athymic nude mice, SMI-6 rapidly and dramatically suppressed the growth of PRL-expressing BC xenografts. This report represents a pre-clinical phase of developing novel anti-cancer agents with the potential to become effective therapeutics in breast cancer patients.
The ubiquitous plasticizer, diethylhexyl phthalate (DEHP), is a known endocrine disruptor. However, DEHP exposure effects are not well understood. Changes in industrial and agricultural practices have resulted in increased prevalence of DEHP exposure and has coincided with the heightened occurrence of metabolic syndrome and obesity. DEHP and its metabolites are detected in the umbilical cord blood of newborns; however, the prenatal and perinatal effects of DEHP exposure have not been intensively studied. Previously, we discovered that phosphorylation (p) of proliferating cell nuclear antigen (PCNA) at tyrosine 114 (Y114) is required for adipogenesis and diet-induced obesity in mice. Here, we show the unique ability of DEHP to induce p-Y114 in PCNA in vitro. We also show that while DEHP promotes adipogenesis of wild type (WT) murine embryonic fibroblasts, mutation of Y114 to phenylalanine (Y114F) in PCNA blocked adipocyte differentiation. Given the induction of p-Y114 in PCNA by DEHP and the relationship to obesity, WT and Y114F PCNA mice were exposed to DEHP during gestation or lactation, followed by high fat diet feeding. Paradoxically, in utero exposure of Y114F PCNA females to DEHP led to a significant increase in body mass and was associated with augmented expression of PPARγ, a critical regulator of obesity, compared to WT controls. In utero exposure of WT mice to DEHP led to insulin sensitivity while Y114F mutation ablated this phenotype, indicating that PCNA is an important regulator of early DEHP exposure and ensuing metabolic phenotypes.
Purpose: This study evaluates the prognostic significance of MST1R (RON) expression in breast cancer with respect to disease progression, long-term survival, subtype and association with conventional prognostic factors. Methods: The approach includes interrogation of survival and tumor staging with paired MST1R RNA expression from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Protein expression evaluation was performed using immunohistochemistry (IHC) staining of MST1R on breast cancer tissue samples from the Cancer Diagnosis Program Breast Cancer Progression tissue microarray and locally obtained breast tumor tissue samples analyzed with paired survival, metastasis, and subtype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.