A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with ~270 μm, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 μL of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/μL (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of λ-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.
We report the fabrication, chemical, optical, and photoluminescence characterization of amorphous silicon-rich oxynitride (SiOZNY :H) thin films by plasma-enhanced chemical-vapor deposition. The film compositions were followed by changes in the refractive index. X-ray photoelectron and Fourier transform infrared spectroscopy indicate that the chemical composition is dominated by silicon suboxide bonding with N present as a significant impurity. A broad tunable photoluminescence (PL) emission is visible at room temperature with a quantum efficiency of 0.011% at peak energies to 3.15 eV. The radiative lifetimes are less than 10 ns, and there is nearly no temperature dependence of the PL intensity down to 80 K. Ex situ annealing at temperatures above 850 "C results in an increase in PL efficiency by nearly three orders of magnitude, and the PL intensity is independent of the annealing ambient. The PL results are remarkably similar to literature results in oxidized porous silicon and oxidized nanocrystalline Si thin films, and suggest that the radiative center is due to the defect structure in the silicon suboxide moiety. 0 1995 American institute qf Physics.
Atomic force microscopy analysis of polyhydroxyalkanoate (PHA) inclusions isolated from sonicated Ralstonia eutropha cells revealed that they exhibit two types of surface structure and shape; rough and ovoid, or smooth and spherical. Smooth inclusions possessed linear surface structures that were in parallel arrays with 7-nm spacing. Occasionally, cracks or fissures could be seen on the surface of the rough inclusions, which allowed a measurement of approximately 4 nm for the thickness of the boundary layer. When the rough inclusions were imaged at higher resolution, globular structures, 35 nm in diameter, having a central pore could be seen. These globular structures were connected by a network of 4-nm-wide linear structures. When the inclusions were treated with sodium lauryl sulfate, the boundary layer of the inclusion deteriorated in a manner that would be consistent with a lipid envelope. When the boundary layer was largely gone, 35-nm globular disks could be imaged laying on the surface of the filter beside the inclusions. These data have facilitated the development of a preliminary model for PHA inclusion structure that is more advanced than previous models.
The effect of a remote oxygen plasma on nanocomposite hybrid polymer thin films of poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-MA) has been examined by advancing contact angle, X-ray photoelectron spectroscopy (XPS), and variable-angle spectroscopic ellipsometry (VASE). Exposure to a 25 W remote oxygen-containing plasma was found to convert the surface of POSS-MA films from hydrophobic to hydrophilic within 20 s. The exposure time needed for this conversion to occur decreased as the O2/N2 ratio in the plasma environment increased, indicating a positive correlation between the hydrophilicity and the presence of oxygen in the plasma. Local bonding information inferred from high-resolution XPS data showed that the isobutyl bonding to the POSS moiety is replaced with oxygen as a result of plasma exposure. Finally, VASE data demonstrates that increasing the weight percent of POSS in the copolymer significantly impedes the oxygen plasma degradation of POSS-MA films. On the basis of these results, a model is presented in which the oxygen plasma removes isobutyl groups from the POSS cages and leaves a SiO2-like surface that is correspondingly more hydrophilic than the surface of the untreated samples and is more resistant to oxidation by the plasma. The ability to modify surfaces in this manner may impact the utility of this material for biomedical applications such as microfluidic devices in which the ability to control surface chemistry is critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.