A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure t o pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs t o the family Paramyxoviridae and is most closely related t o the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability t o infect and cause potentially fatal disease in a number of host species, including humans.
Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus aminoterminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione Stransferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a Ϸ300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.
Recently, a new paramyxovirus, now known as Nipah virus (NV), emerged in Malaysia and Singapore, causing fatal encephalitis in humans and a respiratory syndrome in pigs. Initial studies had indicated that NV is antigenically and genetically related to Hendra virus (HV). We generated the sequences of the N, P/C/V, M, F, and G genes of NV and compared these sequences with those of HV and other members of the family Paramyxoviridae. The intergenic regions of NV were identical to those of HV, and the gene start and stop sequences of NV were nearly identical to those of HV. The open reading frames (ORFs) for the V and C proteins within the P gene were found in NV, but the ORF encoding a potential short basic protein found in the P gene of HV was not conserved in NV. The N, P, C, V, M, F, and G ORFs in NV have nucleotide homologies ranging from 88% to 70% and predicted amino acid homologies ranging from 92% to 67% in comparison with HV. The predicted fusion cleavage sequence of the F protein of NV had a single amino acid substitution (K to R) in comparison with HV. Phylogenetic analysis demonstrated that although HV and NV are closely related, they are clearly distinct from any of the established genera within the Paramyxoviridae and should be considered a new genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.