Most events are processed by a number of neural pathways. These pathways often differ considerably in processing speed. Thus, coherent perception requires some form of synchronization mechanism. Moreover, this mechanism must be flexible, because neural processing speed changes over the life of an organism. Here we provide behavioral evidence that humans can adapt to a new intersensory temporal relationship (which was artificially produced by delaying visual feedback). The conflict between these results and previous work that failed to find such improvements can be explained by considering the present results as a form of sensorimotor adaptation.
In color theory and perceptual practice, two color naming combinations are forbidden-reddish greens and bluish yellows-however, when multicolored images are stabilized on the retina, their borders fade and filling-in mechanisms can create forbidden colors. The sole report of such events found that only some observers saw forbidden colors, while others saw illusory multicolored patterns. We found that when colors were equiluminant, subjects saw reddish greens, bluish yellows, or a multistable spatial color exchange (an entirely novel perceptual phenomena); when the colors were nonequiluminant, subjects saw spurious pattern formation. To make sense of color opponency violations, we created a soft-wired model of cortical color opponency (based on winner-take-all competition) whose opponency can be disabled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.