Face and eye detection algorithms are deployed in a wide variety of applications. Unfortunately, there has been no quantitative comparison of how these detectors perform under difficult circumstances. We created a dataset of low light and long distance images which possess some of the problems encountered by face and eye detectors solving real world problems. The dataset we created is composed of reimaged images (photohead) and semi-synthetic heads imaged under varying conditions of low light, atmospheric blur, and distances of 3m, 50m, 80m, and 200m. This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.
Abstract-Eye detection is a well studied problem for the constrained face recognition problem, where we find controlled distances, lighting, and limited pose variation. A far more difficult scenario for eye detection is the unconstrained face recognition problem, where we do not have any control over the environment or the subject. In this paper, we take a look at two different approaches for eye detection under difficult acquisition circumstances, including low-light, distance, pose variation, and blur. A new machine learning approach and several correlation filter approaches, including a new adaptive variant, are compared. We present experimental results on a variety of controlled data sets (derived from FERET and CMU PIE) that have been re-imaged under the difficult conditions of interest with an EMCCD based acquisition system. The results of our experiments show that our new detection approaches are extremely accurate under all tested conditions, and significantly improve detection accuracy compared to a leading commercial detector. This unique evaluation brings us one step closer to a better solution for the unconstrained face recognition problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.