P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that virion incorporation of PSGL-1 on SARS-CoV and SARS-CoV-2 pseudovirions blocks S protein-mediated virus attachment and infection of target cells. These findings suggest that PSGL-1-imprinted non-infectious viral particles could serve as a live attenuated vaccine for SARS-CoV-2 infection.was not certified by peer review)
P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks pseudovirus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells
SUMMARYTimely development of vaccines and antiviral drugs are critical to control the coronavirus disease 2019 (COVID-19) global pandemic 1–6. Current methods for validation of vaccine efficacy involve the use of pseudoviruses, such as the SARS-CoV-2 spike protein (S) pseudotyped lentivirus or vesicular stomatitis virus (VSV), to quantify neutralizing antibodies for blocking viral infection 7–14. The process of pseudovirus infection and quantification is time consuming and can take days to complete. In addition, pseudoviruses contain structural proteins not native to SARS-CoV-2, which may alter particle properties in receptor binding and responses to antibody neutralization 15. Here we describe the development of a new hybrid alphavirus-SARS-CoV-2 particle (Ha-CoV-2) for rapid screening and quantification of neutralization antibodies and antiviral drugs. Ha-CoV-2 is a non-replicating SARS-CoV-2 virus-like particle, composed of only SARS-CoV-2 structural proteins (S, M, N, and E) and a RNA genome derived from a fast expressing alphavirus vector 16. We demonstrate that Ha-CoV-2 can rapidly and robustly express reporter genes in target cells within 3-5 hours following viral entry. We further validate the Ha-CoV-2 system for rapid quantification of neutralization antibodies and antiviral drugs. In addition, we assembled a Ha-CoV-2 particle bearing the D614G mutant spike protein, and found that the mutation led to an approximately 200% increase in virion infectivity. These results demonstrate that Ha-CoV-2 can also be applied for rapid monitoring and quantification of viral mutations for effects on neutralizing antibodies induced by vaccines.
Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123), that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 virus-like particle. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.