The bcr-abl oncogene, present in 95% of patients with chronic myelogenous leukemia (CML), has been implicated as the cause of this disease. A compound, designed to inhibit the Abl protein tyrosine kinase, was evaluated for its effects on cells containing the Bcr-Abl fusion protein. Cellular proliferation and tumor formation by Bcr-Abl-expressing cells were specifically inhibited by this compound. In colony-forming assays of peripheral blood or bone marrow from patients with CML, there was a 92-98% decrease in the number of bcr-abl colonies formed but no inhibition of normal colony formation. This compound may be useful in the treatment of bcr-abl-positive leukemias.
Highlights d Comprehensive LUAD proteogenomics exposes multi-omic clusters and immune subtypes d Phosphoproteomics identifies candidate ALK-fusion diagnostic markers and targets d Candidate drug targets: PTPN11 (EGFR), SOS1 (KRAS), neutrophil degranulation (STK11) d Phospho and acetyl modifications denote tumor-specific markers and druggable proteins
Highlights d Integrated proteogenomic characterization in 103 ccRCC cases d Delineation of chromosomal translocation events leading to chromosome 3p loss d Tumor-specific proteomic/phosphoproteomic alterations unrevealed by mRNA analysis d Immune-based subtypes of ccRCC defined by mRNA, proteome, and phosphoproteome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.