Streamflow augmentation has the potential to become an important application of recycled water in water scarce areas. We assessed the economic and ecological merits of a recycled water project that opted for an inland release of tertiary-treated recycled water in a small stream and wetland compared to an ocean outfall discharge. Costs for the status-quo scenario of discharging secondary-treated effluent to the ocean were compared to those of the implemented scenario of inland streamflow augmentation using recycled water. The benefits of the inland-discharge scenario were greater than the increase in associated costs by US$1.8M, with recreational value and scenic amenity generating the greatest value. We also compared physical habitat quality, water quality, and benthic macroinvertebrate community upstream and downstream of the recycled water discharge to estimate the effect of streamflow augmentation on the ecosystem. The physical-habitat quality was higher downstream of the discharge, although streamflow came in unnatural diurnal pulses. Water quality remained relatively unchanged with respect to dissolved oxygen, pH, and ammonia-nitrogen, although temperatures were elevated. Benthic macroinvertebrates were present in higher abundances, although the diversity was relatively low. A federally listed species, the California red-legged frog (Rana draytonii), was present. Our results may support decision-making for wastewater treatment alternatives and recycled water applications in Mediterranean climates.
Woodchip bioreactors (WBRs) are increasingly being applied to remove nitrate from runoff. In this study, replicate columns with aged woodchips were subjected to a range of measured flow rates and influent nitrate concentrations with an artificial stormwater matrix. Dissolved oxygen (DO), nitrate, and dissolved organic carbon (DOC) were measured along the length of the columns. A multispecies reactive transport model with Michaelis-Menten kinetics was developed to explain the concentration profiles of DO, nitrate, and DOC. Four additional models were developed based on simplifying assumptions, and all five models were tested for their ability to predict nitrate concentrations in the experimental columns. Global sensitivity analysis and constrained optimization determined the set of parameters that minimized the root-mean-squared error (RMSE) between the model and the experimental data. A k-fold validation test revealed no statistical difference in RMSE for predicting nitrate concentrations between a zero-order model and the other multispecies reactive transport models tested. Additionally, the multispecies reactive transport models demonstrated no significant differences in predicting DO and DOC concentrations. These results suggest that denitrification in an aged woodchip bioreactor at constant temperature can effectively be modeled using zero-order kinetics when nitrate concentrations are >2 mg-N L. A multispecies model may be used if predicting DOC or DO concentrations is desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.