In additive manufacturing, it is imperative to increase print speeds, use higher-viscosity resins, and print with multiple different resins simultaneously. To this end, we introduce a previously unexplored ultraviolet-based photopolymerization three-dimensional printing process. The method exploits a continuous liquid interface—the dead zone—mechanically fed with resin at elevated pressures through microfluidic channels dynamically created and integral to the growing part. Through this mass transport control, injection continuous liquid interface production, or iCLIP, can accelerate printing speeds to 5- to 10-fold over current methods such as CLIP, can use resins an order of magnitude more viscous than CLIP, and can readily pattern a single heterogeneous object with different resins in all Cartesian coordinates. We characterize the process parameters governing iCLIP and demonstrate use cases for rapidly printing carbon nanotube–filled composites, multimaterial features with length scales spanning several orders of magnitude, and lattices with tunable moduli and energy absorption.
To date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process. A print strategy with tunable parameters informed by the simulation model is adopted to achieve both the optimal resolution and the maximum print speed. Together, the high-resolution 3D CLIP printer has opened the door to various applications including, but not limited to, biomedical, MEMS, and microelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.