In many animals, the information most important for processing communication sounds, including speech, consists of temporal envelope cues below approximately 20 Hz. Physiological studies, however, have typically emphasized the upper limits of modulation encoding. Responses to sinusoidal AM (SAM) are generally summarized by modulation transfer functions (MTFs), which emphasize tuning to modulation frequency rather than the representation of the instantaneous stimulus amplitude. Unfortunately, MTFs fail to capture important but nonlinear aspects of amplitude coding in the central auditory system. We focus on an alternative data representation, the modulation period histogram (MPH), which depicts the spike train folded on the modulation period of the SAM stimulus. At low modulation frequencies, the fluctuations of stimulus amplitude in decibels are robustly encoded by the cycle-by-cycle response dynamics evident in the MPH. We show that all of the parameters that define a SAM stimulus--carrier frequency, carrier level, modulation frequency, and modulation depth--are reflected in the shape of cortical MPHs. In many neurons that are nonmonotonically tuned for sound amplitude, the representation of modulation frequency is typically sacrificed to preserve the mapping between the instantaneous discharge rate and the instantaneous stimulus amplitude, resulting in two response modes per modulation cycle. This behavior, as well as the relatively poor tuning of cortical MTFs, suggests that auditory cortical neurons are not well suited for operating as a "modulation filterbank." Instead, our results suggest that <20 Hz, the processing of modulated signals is better described as envelope shape discrimination rather than modulation frequency extraction.
The anatomy and connectivity of the primate auditory cortex has been modeled as a core region receiving direct thalamic input surrounded by a belt of secondary fields. The core contains multiple tonotopic fields (including the primary auditory cortex, AI, and the rostral field, R), but available data only partially address the degree to which those fields are functionally distinct. This report, based on single-unit recordings across four hemispheres in awake macaques, argues that the functional organization of auditory cortex is best understood in terms of temporal processing. Frequency tuning, response threshold, and strength of activation are similar between AI and R, validating their inclusion as a unified core, but the temporal properties of the fields clearly differ. Onset latencies to pure tones are longer in R (median, 33 ms) than in AI (20 ms); moreover, synchronization of spike discharges to dynamic modulations of stimulus amplitude and frequency, similar to those present in macaque and human vocalizations, suggest distinctly different windows of temporal integration in AI (20-30 ms) and R (100 ms). Incorporating data from the adjacent auditory belt reveals that the divergence of temporal properties within the core is in some cases greater than the temporal differences between core and belt.
In the ascending auditory pathway, the context in which a particular stimulus occurs can influence the character of the responses that encode it. Here we demonstrate that the cortical representation of a binaural cue to sound source location is profoundly context-dependent: spike rates elicited by a 0 degrees interaural phase disparity (IPD) were very different when preceded by 90 degrees versus -90 degrees IPD. The changes in firing rate associated with equivalent stimuli occurring in different contexts are comparable to changes in discharge rate that establish cortical tuning to the cue itself. Single-unit responses to trapezoidally modulated IPD stimuli were recorded in the auditory cortices of awake rhesus monkeys. Each trapezoidal stimulus consisted of linear modulations of IPD between two steady-state IPDs differing by 90 degrees. The stimulus set was constructed so that identical IPDs and sweeps through identical IPD ranges recurred as elements of disparate sequences. We routinely observed orderly context-induced shifts in IPD tuning. These shifts reflected an underlying enhancement of the contrast in the discharge rate representation of different IPDs. This process is subserved by sensitivity to stimulus events in the recent past, involving multiple adaptive mechanisms operating on timescales ranging from tens of milliseconds to seconds. These findings suggest that the cortical processing of dynamic acoustic signals is dominated by an adaptive coding strategy that prioritizes the representation of stimulus changes over actual stimulus values. We show how cortical selectivity for motion direction in real space could emerge as a consequence of this general coding principle.
Primary auditory cortex plays a crucial role in spatially directed behavior, but little is known about the effect of behavioral state on the neural representation of spatial cues. Macaques were trained to discriminate binaural cues to sound localization, eventually allowing measurement of thresholds comparable to human hearing. During behavior and passive listening, single units in low-frequency auditory cortex showed robust and consistent tuning to interaural phase difference (IPD). In most neurons, behavior exerted an effect on peak discharge rate (58% increased, 13% decreased), but this was not accompanied by a detectable shift in the best IPD of any cell. Neurometric analysis revealed a difference in discriminability between the behaving and passive condition in half of the sample (52%), but steepening of the neurometric function (29%) was only slightly more common than flattening (23%). This suggests that performance of a discrimination task does not necessarily confer an advantage in understanding the representation of the spatial cue in primary auditory cortex but nevertheless revealed some physiological effects. These results suggest that responses observed during passive listening provide a valid representation of neuronal response properties in core auditory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.