Changing Assemblages
Although the rate of species extinction has increased markedly as a result of human activity across the biosphere, conservation has focused on endangered species rather than on shifts in assemblages.
Dornelas
et al.
(p.
296
; see the Perspective by
Pandolfi and Lovelock
), using an extensive set of biodiversity time series of species occurrences in both marine and terrestrial habitats from the past 150 years, find species turnover above expected but do not find evidence of systematic biodiversity loss. This result could be caused by homogenization of species assemblages by invasive species, shifting distributions induced by climate change, and asynchronous change across the planet. All of which indicates that it is time to review conservation priorities.
Species abundance distributions (SADs) follow one of ecologyÕs oldest and most universal laws -every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the study of SADs. Several key points emerge. (i) Literally dozens of models have been proposed to explain the hollow curve. Unfortunately, very few models are ever rejected, primarily because few theories make any predictions beyond the hollow-curve SAD itself. (ii) Interesting work has been performed both empirically and theoretically, which goes beyond the hollow-curve prediction to provide a rich variety of information about how SADs behave. These include the study of SADs along environmental gradients and theories that integrate SADs with other biodiversity patterns. Central to this body of work is an effort to move beyond treating the SAD in isolation and to integrate the SAD into its ecological context to enable making many predictions. (iii) Moving forward will entail understanding how sampling and scale affect SADs and developing statistical tools for describing and comparing SADs. We are optimistic that SADs can provide significant insights into basic and applied ecological science.
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.