The genetic algorithm (GA), a new search technique, is applied to a multiple objective groundwater pollution containment problem. This problem involves finding the set of optimal solutions on the trade-off curve between the reliability and cost of a hydraulic containment system. The decision variables are how many wells to install, where to install them, and how much to pump from each. The GA is an optimization technique patterned after the biological processes of natural selection and evolution. A GA operates on a population of decision variable sets. Through the application of three specialized genetic operators: selection, crossover, and mutation, a GA population "evolves" toward an optimal solution. In the paper, simple GAs and GAs that can solve multiple objective problems are described. Two variations of a multiple objective GA are formulated: a vector-evaluated GA (VEGA) and a Pareto GA. For the zerofixed cost situation, the Pareto GA is shown to be superior to the VEGA and is shown to produce a trade-off curve similar to that obtained via another optimization technique, mixed integer chance constrained programming (MICCP). The effect on the VEGA and Pareto GA of parameter variation is shown. The Pareto GA is shown to be capable of incorporating the fixed costs associated with installing a system of wells. Results for several levels of fixed cost are presented. A comparison of computer resources required by the GAs and the MICCP method is given. Future research plans are discussed, including the incorporation of the objective of pump-out time into the model and the development of parallelized GAs. 1589 1590 RITZEL ET AL.: USING GENETIC ALGORITHMS FOR GROUNDWATER PROBLEM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.