Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure on dissipative behavior is a grand challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a novel Scanning Probe Microscopy (SPM) technique in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point * Corresponding author, sergei2@ornl.gov 2 (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to all ambient and liquid SPMs.
A dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed. This method allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible. This includes techniques with non-acoustic driving where the phase of the driving force is frequency and/or position dependent. An example of the later is Piezoresponse Force Microscopy (PFM), where the resonant frequency of the cantilever is strongly dependent on the contact stiffness of the tip-surface junction and the local mechanical properties, but the spatial variability of the drive phase rules out the use of a phase locked loop. Combined with high-voltage switching and imaging, dual-frequency, resonance-tracking PFM allows reliable studies of electromechanical and elastic properties and polarization dynamics in a broad range of inorganic and biological systems, and is illustrated using lead zirconate-titanate, rat tail collagen, and native and switched ferroelectric domains in lithium niobate.
Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway toward ultrahigh (>10 TBit inch −2 ) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize the recent progress in applications of piezoresponse force microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments and spectroscopic studies of polarization switching, are discussed in detail. Finally, we review the recent progress on understanding and exploiting photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells and supercapacitor applications.
Methylammonium lead iodide (MAPbI 3 ) perovskite shows an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI 3 (Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a 1 -a 2 -phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubictetragonal phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.