To more fully understand the potential for transport of nitroaromatic compounds in soils and subsoils,the adsorption of a series of para- and meta-substituted nitrobenzenes (SNBs) by K-smectite clay was measured. Adsorption isotherms were fit to the Freundlich equation, and the resultant Freundlich adsorption coefficients (log(Kf) were positively correlated with the Hammett substituent constant (r2 = 0.80). This relationship and a positive reaction constant (p = 1.15) indicate that the adsorption reaction is favored by electron-withdrawing substituents. These results are consistent with an electron donor (smectite)-acceptor (substituted nitrobenzene) mechanism offered previously. However, quantum calculations did not reveal any systematic relationship between the Hammett constant and the electron density on the aromatic ring, which would explain a donor-acceptor relationship. Rather, electron density donated by a second substituent on nitrobenzene appears to be appropriated by the nitro group leaving ring electron density unchanged. Fourier transform infrared spectroscopy revealed shifts in the -NO2 vibrational modes of 1,3,5-trinitrobenzene (TNB) upon adsorption to K+-smectite that were consistent with the complexation of K+ by -NO2 groups. Such TNB vibrational shifts were not observed for SWy-1 saturated with more strongly hydrated cations (i.e., Na+, Mg2+, Ca2+, and Ba2+). The simultaneous interaction of multiple -NO2 groups with exchangeable K+ was indicated by molecular dynamic simulations. Adsorption of SNBs by smectite clays appears to result from the additive interactions of -NO2 groups and secondary substituents with interlayer K+ ions. Adsorption occurs to a greater or lesser extent depending on the abilities of substituents to complex additional interlayer cations and the water solubilities of SNBs. We conclude that the adsorption trends of SNBs on K-SAz-1 can be explained without recourse to hypothetical electron donor-acceptor complexes.
A molecular dynamics model for clays and the oxide minerals is desirable for studying the kinetics and thermodynamics of adsorption processes. To this end, a valence force field for aluminous, dioctahedral clay minerals was developed. Novel aspects of this development include the bending potential for octahedral O−Al−O angles, which uses a quartic polynomial to create a double-well potential with minima at both 90° and 180°. Also, atomic point charges were derived from comparisons of ab initio molecular electrostatic potentials with X-ray diffraction-based deformation electron densities. Isothermal−isobaric molecular dynamics simulations of quartz, gibbsite, kaolinite, and pyrophyllite were used to refine the potential energy parameters. The resultant force field reproduced all the major structural parameters of these minerals to within 1% of their experimentally determined values. Transferability of the force field to simulations of adsorption onto clay mineral surfaces was tested through simulations of Na+, Ca2+, and hexadecyltrimethylammonium (HDTMA+) in the interlayers of beidellite clays. The new force field worked rather well with independently derived nonbonded parameters for all three adsorbates, as indicated by comparisons between experimental and molecular-dynamics-predicted d (001) layer spacings of the homoionic beidellites.
The adsorption of two dinitrophenol herbicides, 4,6-dinitro-o-cresol (DNOC) and 4,6-dinitro-o-sec-butyl phenol (dinoseb), by two reference smectite clays (SWy-2 and SAz-1) was evaluated using a combination of sorption isotherms, Fourier transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and molecular dynamic simulations. Clays were subject to saturation with various cations, and charge reduction. The DNOC adsorption decreased with increasing pH indicating that DNOC was primarily adsorbed as the neutral species. The FTIR spectra of DNOC-clay films showed that DNOC molecules are oriented parallel to the clay surface. Interlayer cations have a strong effect on adsorption depending largely on their hydration energies. Weakly hydrated cations, e.g. K+ and Cs+, resulted in greater sorption compared to more strongly hydrated cations such as Na+ or Ca2+. Lower hydration favors direct interactions of exchangeable cations with -NO2 groups of DNOC and manifests optimal interlayer spacings for adsorption. In the presence of sorbed DNOC, an interlayer spacing for K-SWy-2 of between 12 and 12.5 Å was maintained regardless of the presence of water. This d-spacing allowed DNOC molecules to interact simultaneously with the opposing clay layers thus minimizing contact of DNOC with water. The charge density of clays also affected sorption by controlling the size of adsorption domains. Accordingly, DNOC adsorption by low-charge clay (K-SWy-2) was much higher than by high-charge clay (K-SAz-1) and Li-charge reduction greatly enhanced dinoseb adsorption by K-SAz-1. Steric constraints were also evident from the observation that adsorption of DNOC, which contains a methyl substituent, was much greater than dinoseb, which contains a bulkier isobutyl group. Adsorption of DNOC by K-SAz-1 was not affected in the presence of dinoseb, whereas dinoseb adsorption was greatly reduced in the presence of DNOC.
Soil organic matter (SOM) is often considered the dominant sorptive phase for organic contaminants and pesticides in soil-water systems. This is evidenced by the widespread use of organic-matter-normalized sorption coefficients (K(OM)) to predict soil-water distribution of pesticides, an approach that ignores the potential contribution of soil minerals to sorption. To gain additional perspective on the potential contributions of clays and SOM to pesticide retention in soils, we measured sorption of seven pesticides by a K-saturated reference smectite clay (SWy-2) and SOM (represented by a muck soil). In addition, we measured the adsorption of atrazine by five different K-saturated smectites and Ca-saturated SWy-2. On a unit mass basis, the K-SWy-2 clay was a more effective sorbent than SOM for 4,6-dinitro-o-cresol (DNOC), dichlobenil, and carbaryl of the seven pesticides evaluated, of which, DNOC was sorbed to the greatest extent. Atrazine was sorbed to a similar extent by K-SWy-2 and SOM. Parathion, diuron, and biphenyl were sorbed to a greater extent by SOM than by K-SWy-2. Atrazine was adsorbed by Ca-SWy-2 to a much lesser extent than by K-SWy-2. This appears to be related to the larger hydration sphere of Ca(2+) (compared to that of K(+)) which shrinks the effective size of the adsorption domains between exchangeable cations, and which expands the clay layers beyond the apparently optimal spacing of approximately 12.2 A for sorption of aromatic pesticide structures. Although a simple relation between atrazine adsorption by different K-smectites and charge properties of clay was not observed, the highest charge clay was the least effective sorbent; a higher charge density would result in a loss of adsorption domains. These results indicate that for certain pesticides, expandable soil clays have the potential to be an equal or dominant sorptive phase when compared to SOM for pesticide retention in soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.