Recent studies have suggested that formation of Golgi membrane tubules involves the generation of membrane-associated lysophospholipids by a cytoplasmic Ca2+-independent phospholipase A2 (PLA2). Herein, we provide additional support for this idea by showing that inhibition of lysophospholipid reacylation by a novel Golgi-associated lysophosphatidylcholine acyltransferase (LPAT) induces the rapid tubulation of Golgi membranes, leading in their retrograde movement to the endoplasmic reticulum. Inhibition of the Golgi LPAT was achieved by 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976), a previously characterized antagonist of acyl-CoA cholesterol acyltransferase. The effect of CI-976 was similar to that of brefeldin A, except that the coatomer subunit β-COP remained on Golgi-derived membrane tubules. CI-976 also enhanced the cytosol-dependent formation of tubules from Golgi complexes in vitro and increased the levels of lysophosphatidylcholine in Golgi membranes. Moreover, preincubation of cells with PLA2 antagonists inhibited the ability of CI-976 to induce tubules. These results suggest that Golgi membrane tubule formation can result from increasing the content of lysophospholipids in membranes, either by stimulation of a PLA2 or by inhibition of an LPAT. These two opposing enzyme activities may help to coordinately regulate Golgi membrane shape and tubule formation.
ATP citrate (pro-S)-lyase (EC 4.1.3.8), a cytosolic enzyme that generates acetyl-CoA for cholesterol and fatty acid synthesis de novo, is a potential target for hypolipidaemic intervention. Here we describe the biological effects of the inhibition of ATP citrate-lyase on lipid metabolism in Hep G2 cells, and plasma lipids in rats and dogs, by using SB-204990, the cell-penetrant gamma-lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076 (Ki=1 microM). Consistent with an important role of ATP citrate-lyase in the supply of acetyl-CoA units for lipid synthesis de novo, SB-204990 inhibited cholesterol synthesis and fatty acid synthesis in Hep G2 cells (dose-related inhibition of up to 91% and 82% respectively) and rats (76% and 39% respectively). SB-204990, when administered orally to rats, was absorbed into the systemic circulation; pharmacologically relevant concentrations of SB-201076 were recovered in the liver. When administered in the diet (0.05-0. 25%, w/w) for 1 week, SB-204990 caused a dose-related decrease in plasma cholesterol (by up to 46%) and triglyceride levels (by up to 80%) in rats. This hypolipidaemic effect could be explained, at least in part, by a decrease (up to 48%) in hepatic very-low-density lipoprotein (VLDL) production as measured by the accumulation of VLDL in plasma after injection of Triton WR-1339. SB-204990 (25 mg/kg per day) also decreased plasma cholesterol levels (by up to 23%) and triglyceride levels (by up to 38%) in the dog, preferentially decreasing low-density lipoprotein compared with high-density lipoprotein cholesterol levels. Overall these results are consistent with the concept that ATP citrate-lyase is an important enzyme in controlling substrate supply for lipid synthesis de novo and a potential enzyme target for hypolipidaemic intervention.
Phosphoglycerol transferase I, an enzyme of the inner, cytoplasmic membrane of Escherichia coli, catalyzes the in vitro transfer of phosphoglycerol residues from phosphatidylglycerol to membrane-derived oligosaccharides or to the model substrate arbutin (p-hydroxyphenyl-,1-D-gluceside). The products are a phosphoglycerol diester derivative of membrane-derived oligosaccharides or arbutin, respectively, and sn-1,2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.