The optical properties of coupled metallic nanorods are studied to investigate the use of coupled plasmonic structures in field-enhanced spectroscopies. Light scattering by coupled nanorods is calculated with the boundary element method, including retardation. The modes of coupled nanorod systems are calculated by the boundary charge method and discussed in terms of their symmetry. Similar scattering behavior for isolated nanorods and pairs of nanorods can mask the very different local responses that produce near-field enhancement. The response of isolated rods redshifts with increasing rod length because intrarod restoring forces are reduced. The near-and far-field responses increase monotonically with increasing rod length ͑increasing polarization along the rod͒. For coupled nanorods, coupling localizes charge at the gap between the rod ends and splits degenerate modes. The localized charge depolarizes the intrarod response and provides an additional redshift. Moreover, the near-field enhancement in the gap between the nanorods is dramatically increased by coupling-induced charge localization at the gap. For short nanorods, the near-field response in coupled systems is determined by the geometry of the rod ends that define the gap. For longer nanorods, the response in coupled systems is determined by the rod length. Changing the dimensions and geometry of the nanorods to modify the interrod coupling has a major effect on the local-field enhancement. The effects of the environment and the actual metallic material do not have as big an influence on the field enhancement.
Nanowire field effect transistors were prepared by a wet chemical template replication method using anodic aluminum oxide membranes. The membrane pores were first lined with a thin SiO2 layer by the surface sol−gel method. Au, CdS (or CdSe), and Au wire segments were then sequentially electrodeposited within the pores, and the resulting nanowires were released by dissolution of the membrane. Electrofluidic alignment of these nanowires between source and drain leads and evaporation of gold over the central CdS (CdSe) stripe affords a “wrap-around gate” structure. At V DS = −2 V, the Au/CdS/Au devices had an ON/OFF current ratio of 103, a threshold voltage of 2.4 V, and a subthreshold slope of 2.2 V/decade. A 3-fold decrease in the subthreshold slope relative to that of planar nanocrystalline CdSe devices can be attributed to coaxial gating. The control of dimensions afforded by template synthesis should make it possible to reduce the gate dielectric thickness, channel length, and diameter of the semiconductor segment to sublithographic dimensions while retaining the simplicity of the wet chemical synthetic method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.