BackgroundThe ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro.MethodsEach cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + .ResultsWe found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction.ConclusionsIn this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.
Soil-transmitted helminths are parasitic nematodes that inhabit the human intestine. These parasites, which include two hookworm species, Ancylostoma duodenale and Necator americanus, the whipworm Trichuris trichiura , and the large roundworm Ascaris lumbricoides , infect upwards of two billion people and are a major cause of disease burden in children and pregnant women. The challenge with treating these diseases is that poverty, safety, and inefficient public health policy have marginalized drug development and distribution to control infection in humans. Anthelmintics (anti-worm drugs) have historically been developed and tested for treatment of non-human parasitic nematodes that infect livestock and companion animals. Here we systematically compare the in vitro efficacy of all major anthelmintic classes currently used in human therapy (benzimidazoles, nicotinic acetylcholine receptor agonists, macrocyclic lactones, nitazoxanide) against species closely related to human parasitic nematodes-Ancylostoma ceylanicum, Trichuris muris , and Ascaris suum --- as well as a rodent parasitic nematode used in veterinary drug discovery, Heligmosomoides bakeri , and the free-living nematode Caenorhabditis elegans. Extensive in vitro data is complemented with single-dose in vivo data in three rodent models of parasitic diseases. We find that the effects of the drugs in vitro and in vivo can vary greatly among these nematode species, e.g., the efficacy of albendazole is strong on A. ceylanicum but weak on H . bakeri . Nonetheless, certain commonalities of the in vitro effects of the drugs can be seen, e.g., nitazoxanide consistently shows an all-or-nothing response. Our in vitro data suggest that further optimization of the clinical efficacy of some of these anthelmintics could be achieved by altering the treatment routine and/or dosing. Most importantly, our in vitro and in vivo data indicate that the hookworm A. ceylanicum is a particularly sensitive and useful model for anthelmintic studies and should be incorporated early on in drug screens for broad-spectrum human soil-transmitted helminth therapies.
An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy.
c Soil-transmitted helminths (hookworms, whipworms, and large roundworms) are agents of intestinal roundworm diseases of poverty that infect upwards of 2 billion people worldwide. A great challenge in treating these diseases is the development of anthelmintic therapeutics that are inexpensive, can be produced in great quantity, and are capable of delivery under varied and adverse environmental conditions. A potential solution to this challenge is the use of live bacteria that are acceptable for human consumption, e.g., Bacillus subtilis, and that can be engineered with therapeutic properties. In this study, we expressed the Bacillus thuringiensis anthelmintic protein Cry5B in a bacterial strain that has been used as a model for live bacterial therapy, Bacillus subtilis PY79. PY79 transformed with a Cry5B expression plasmid (PY79-Cry5B) is able to express Cry5B from the endogenous B. thuringiensis cry5B promoter. During sporulation of PY79-Cry5B, Cry5B is packaged as a crystal. Furthermore, Cry5B produced in PY79 is bioactive, with a 50% lethal concentration (LC 50 ) of 4.3 g/ml against the roundworm Caenorhabditis elegans. PY79-Cry5B was a significantly effective therapeutic in experimental Ancylostoma ceylanicum hookworm infections of hamsters. A single 10-mg/kg (0.071 mol/kg of body weight) dose of Cry5B administered as a Cry5B-PY79 spore crystal lysate achieved a 93% reduction in hookworm burdens, which is superior on a molar level to reductions seen with clinically used anthelmintics. Given that a bacterial strain such as this one can be produced cheaply in massive quantities, our results demonstrate that the engineering and delivery of live bacterial strains have great potential to treat a significant contributor to poverty worldwide, namely, hookworm disease and other soil-transmitted helminthiasis.
The use of lentiviral vectors extends from the laboratory, where they are used for basic studies in virology and as gene transfer vectors gene delivery, to the clinic, where clinical trials using these vectors for gene therapy are currently underway. Lentiviral vectors are useful for gene transfer because they have a large cloning capacity and a broad tropism. Although procedures for lentiviral vector production have been standardized, simple methods to create higher titer virus during production would have extensive and important applications for both research and clinical use. Here we present a simple and inexpensive method to increase the titer by 3- to 8-fold for both integration-competent lentivirus and integration-deficient lentivirus. This is achieved during standard lentiviral production by the addition of caffeine to a final concentration of 2-4 mM. We find that sodium butyrate, a histone deacetylase inhibitor shown previously to increase viral titer, works only ∼50% as well as caffeine. We also show that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) inhibitor NU7026 can also increase viral titer, but that the combination of caffeine and NU7026 is not more effective than caffeine alone. We show that the time course of caffeine treatment is important in achieving a higher titer virus, and is most effective when caffeine is present from 17 to 41 hr posttransfection. Last, although caffeine increases lentiviral vector titer, it has the opposite effect on the titer of adeno-associated virus type 2 vector. Together, these results provide a novel, simple, and inexpensive way to significantly increase the titer of lentiviral vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.