Radial glial (RG) cells have been demonstrated to be a major neural progenitor cell type, but in the human fetal brain, neither their molecular nor their spatiotemporal characteristics are well known. We used glial and neuronal-specific antibodies to determine the antigen characteristics and distribution of RG cells and other neuronal progenitors in the human brain during the first half of intrauterine development. Proliferating RG (4A4+) cells in the ventricular zone (VZ) showed clear caudorostral and ventrodorsal gradients, spreading from the spinal cord to the ventral rhombencephalon, at embryonic stages (4.5-5.5 gestational weeks [gw]). However, in the same embryo, other dividing cells expressed the neuronal marker SMI-31 and were present throughout the entire CNS, including the rostral prosencephalon. At the beginning of cortical neurogenesis (6 gw), proliferating VZ cells labeled either with neuronal markers (SMI-31, MAP2, beta-III-tubulin), double-labeled 4A4(+)/SMI-31+ cells, or cells not labeled with these antibodies, were in close proximity to each other. At midgestation (17-24 gw), RG divisions were less frequent, but were spread throughout the entire cerebral cortex, including the subventricular and intermediate zones and the subpial granular layer. Several subtypes of RG were co-labeled with vimentin and other glial markers (BLBP, GFAP, or GLAST) and quantified in vitro. In conclusion, the diversity of cortical progenitors in the human brain may, in part, explain the unique complexity of the human cerebral cortex.
BACKGROUND Middle meningeal artery (MMA) embolization has emerged as a promising treatment for chronic subdural hematoma (cSDH). OBJECTIVE To determine the safety and efficacy of MMA embolization. METHODS Consecutive patients who underwent MMA embolization for cSDH (primary treatment or recurrence after conventional surgery) at 15 centers were included. Clinical details and follow-up were collected prospectively. Primary clinical and radiographic outcomes were the proportion of patients requiring additional surgical treatment within 90 d after index treatment and proportion with > 50% cSDH thickness reduction on follow-up computed tomography imaging within 90 d. National Institute of Health Stroke Scale and modified Rankin Scale were also clinical outcomes. RESULTS A total of 138 patients were included (mean age: 69.8, 29% female). A total of 15 patients underwent bilateral interventions for 154 total embolizations (66.7% primary treatment). At presentation, 30.4% and 23.9% of patients were on antiplatelet and anticoagulation therapy, respectively. Median admission cSDH thickness was 14 mm. A total of 46.1% of embolizations were performed under general anesthesia, and 97.4% of procedures were successfully completed. A total of 70.2% of embolizations used particles, and 25.3% used liquid embolics with no significant outcome difference between embolization materials (P > .05). On last follow-up (mean 94.9 d), median cSDH thickness was 4 mm (71% median thickness reduction). A total of 70.8% of patients had >50% improvement on imaging (31.9% improved clinically), and 9 patients (6.5%) required further cSDH treatment. There were 16 complications with 9 (6.5%) because of continued hematoma expansion. Mortality rate was 4.4%, mostly unrelated to the index procedure but because of underlying comorbidities. CONCLUSION MMA embolization may provide a safe and efficacious minimally invasive alternative to conventional surgical techniques.
Human radial glia (RG) share many of the features described in rodents, but also have a number of characteristics unique to the human brain. Results obtained from different mammalian species including human and non-human primates reveal differences in the involvement of RG in neurogenesis and oligodendrogenesis and in the timing of the initial expression of typical RG immunomarkers. A common problem in studying the human brain is that experimental procedures using modern molecular and genetic methods, such as in vivo transduction with retroviruses or creation of knockout or transgenic mutants, are not possible. Nevertheless, abundant and valuable information about the development of the human brain has been revealed using postmortem human material. Additionally, a combination and spectrum of in vitro techniques are used to gain knowledge about normal developmental processes in the human brain, including better understanding of RG as progenitor cells. Molecular and functional characterization of multipotent progenitors, such as RG, is important for future cell replacement therapies in neurological and psychiatric disorders, which are often resistant to conventional treatments. The protracted time of development and larger size of the human brain could provide insight into processes that may go unnoticed in the much smaller rodent cortex, which develops over a much shorter period. With that in mind, we summarize results on the role of RG in the human fetal brain.
BackgroundIn response to the COVID-19 pandemic, many centers altered stroke triage protocols for the protection of their providers. However, the effect of workflow changes on stroke patients receiving mechanical thrombectomy (MT) has not been systematically studied.MethodsA prospective international study was launched at the initiation of the COVID-19 pandemic. All included centers participated in the Stroke Thrombectomy and Aneurysm Registry (STAR) and Endovascular Neurosurgery Research Group (ENRG). Data was collected during the peak months of the COVID-19 surge at each site. Collected data included patient and disease characteristics. A generalized linear model with logit link function was used to estimate the effect of general anesthesia (GA) on in-hospital mortality and discharge outcome controlling for confounders.Results458 patients and 28 centers were included from North America, South America, and Europe. Five centers were in high-COVID burden counties (HCC) in which 9/104 (8.7%) of patients were positive for COVID-19 compared with 4/354 (1.1%) in low-COVID burden counties (LCC) (P<0.001). 241 patients underwent pre-procedure GA. Compared with patients treated awake, GA patients had longer door to reperfusion time (138 vs 100 min, P=<0.001). On multivariate analysis, GA was associated with higher probability of in-hospital mortality (RR 1.871, P=0.029) and lower probability of functional independence at discharge (RR 0.53, P=0.015).ConclusionWe observed a low rate of COVID-19 infection among stroke patients undergoing MT in LCC. Overall, more than half of the patients underwent intubation prior to MT, leading to prolonged door to reperfusion time, higher in-hospital mortality, and lower likelihood of functional independence at discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.