Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c′ (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (Kd ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe–NO2), δ(ONO), and νs(NO2) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO}6 and {FeNO}7 states, enabling FTIR measurements to distinguish νs(NO2) and νas(NO2) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H2O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of hemenitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.
Bacterial kidney disease (BKD) is a major health problem of salmonids, affecting both wild and cultured salmon. The disease is caused by Renibacterium salmoninarum (Rs), a fastidious, slow-growing and strongly Gram-positive diplobacillus that produces chronic, systemic infection characterized by granulomatous lesions in the kidney and other organs, often resulting in death. Fast detection of the pathogen is important to limit the spread of the disease, particularly in hatcheries or aquaculture facilities. Aptamers are increasingly replacing conventional antibodies as platforms for the development of rapid diagnostic tools. In this work, we describe the first instance of isolating and characterizing a ssDNA aptamer that binds with high affinity to p57 or major soluble antigen (MSA), the principal antigen found on the cell wall surface of Rs. Specifically, in this study a construct of the full-length protein containing a DNA binding domain (MSA-R2c) was utilized as target. Aptamers were isolated from a pool of random sequences using GO-SELEX (graphene oxide-systematic evolution of ligands by exponential enrichment) protocol. The selection generated multiple aptamers with conserved motifs in the random region. One aptamer with high frequency of occurrence in different clones was characterized and found to display a strong binding affinity to MSA-R2c with a Kd of 3.0 ± 0.6 nM. The aptamer could be potentially utilized for the future development of a sensor for rapid and onsite detection of Rs in water or in infected salmonids, replacing time-consuming and costly lab analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.