The genome-wide association (GWA) study is an increasingly popular way to attempt to identify the causal variants in human disease. Duplicate genotyping (or re-genotyping) a portion of the samples in a GWA study is common, though it is typical for these data to be ignored in subsequent tests of genetic association. We demonstrate a method for including duplicate genotype data in linear trend tests of genetic association which yields increased power. We also consider the cost-effectiveness of collecting duplicate genotype data and find that when the relative cost of genotyping to phenotyping and sample acquisition costs is less than or equal to the genotyping error rate it is more powerful to duplicate genotype the entire sample instead of spending the same money to increase the sample size. Duplicate genotyping is particularly cost-effective when SNP minor allele frequencies are low. Practical advice for the implementation of duplicate genotyping is provided. Free software is provided to compute asymptotic and permutation based tests of association using duplicate genotype data as well as to aid in the duplicate genotyping design decision.
BackgroundTypically, a two-phase (double) sampling strategy is employed when classifications are subject to error and there is a gold standard (perfect) classifier available. Two-phase sampling involves classifying the entire sample with an imperfect classifier, and a subset of the sample with the gold-standard.Methodology/Principal FindingsIn this paper we consider an alternative strategy termed reclassification sampling, which involves classifying individuals using the imperfect classifier more than one time. Estimates of sensitivity, specificity and prevalence are provided for reclassification sampling, when either one or two binary classifications of each individual using the imperfect classifier are available. Robustness of estimates and design decisions to model assumptions are considered. Software is provided to compute estimates and provide advice on the optimal sampling strategy.Conclusions/SignificanceReclassification sampling is shown to be cost-effective (lower standard error of estimates for the same cost) for estimating prevalence as compared to two-phase sampling in many practical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.