A quantum spin Hall (QSH) insulator is a novel twodimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling 1,2 . By investigating the electronic structure of epitaxially grown monolayer 1T'-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T'-WTe 2 as a new class of QSH insulator with large bandgap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).A two-dimensional (2D) topological insulator (TI), or a quantum spin Hall insulator, is characterized by an insulating bulk and a conductive helical edge state, in which carriers with different spins counter-propagate to realize a geometry-independent edge conductance 2e 2 /h (refs 1,2). The only scattering channel for such helical edge current is back scattering, which is prohibited by time reversal symmetry, making QSH insulators a promising material candidate for spintronic and other applications.The prediction of the QSH effect in HgTe quantum wells sparked intense research efforts to realize the QSH state [3][4][5][6][7][8][9][10][11] . So far only a handful of QSH systems have been fabricated, mostly limited to quantum well structures of three-dimensional (3D) semiconductors such as HgTe/CdTe (ref.3) and InAs/GaSb (ref. 6). Edge conduction consistent with a QSH state has been observed 3,6,12 . However, the behaviour under a magnetic field, where time reversal symmetry is broken, cannot be explained within our current understanding of the QSH effect 13,14 . There have been continued efforts to predict and investigate other material systems to further advance the understanding of this novel quantum phenomenon 5,[7][8][9]15 . So far, it has been difficult to make a robust 2D material with a QSH state, a platform needed for widespread study and application. The small bandgaps exhibited by many candidate systems, as well as their vulnerability to strain, chemical adsorption, and element substitution, make them impractical for advanced spectroscopic studies or applications. For example, a QSH insulator candidate stanene, a monolayer analogue of graphene for tin, grown on Bi 2 Se 3 becomes topologically trivial due to the modification of its band structure by the underlying substrate 11,16 . Free-standing Bi film with 2D bonding on a cleaved surface has shown edge conduction 9 , but its topological nature is still debated 17 . It takes 3D out-of-plane bonding with the substrate and large stra...
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high-temperature superconductors. Similarly, the new iron-based high-temperature superconductors exhibit a tetragonal-to-orthorhombic structural transition (i.e., a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here, we present an angle-resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, BaðFe 1-x Co x Þ 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals, the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.C orrelated electron systems owe their emergent phenomena to a complex array of competing electronic phases. Among these, a nematic phase is one where rotational symmetry is spontaneously broken without breaking translational symmetry (1, 2). Two well-established examples are found in certain quantum Hall states (3) and in the bilayer ruthenate Sr 3 Ru 2 O 7 (4), both of which exhibit a large transport anisotropy under the application of large magnetic fields, even though they seem to originate from apparently different physics. Recently, evidence of nematicity has also been reported in the pseudogap phase of cuprate high-temperature (high-T C ) superconductors, in both YBa 2 Cu 3 O y (5) and Bi 2 Sr 2 CaCu 2 O 8þδ (6). The proximity of the pseudogap phase to superconductivity raises the question of what role nematicity plays in relation to the mechanism of high-T C superconductivity. Intriguingly, the newly discovered iron pnictide high-T C superconductors also exhibit a nematic phase in the form of a tetragonal-to-orthorhombic structural transition that either precedes or accompanies the onset of long-range antiferromagnetic order (7,8), both of which are suppressed with doping leading to...
Surfaces and interfaces o er new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides 1-4 . Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO 3 (001) surface 5-7 to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO 3 /SrTiO 3 interface 8-13 , our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO 3 -based 2DELs.Carrier concentration is a key parameter defining the ground state of correlated electron systems. At the LaAlO 3 /SrTiO 3 interface, the 2DEL density can be tailored by field-effect gating. As the system is depleted of carriers, its ground state evolves from a high-mobility 2DEL 4 into a two-dimensional superconductor 8-10 with pseudogap behaviour 11 and possible pairing above T c (ref. 12). An analogous 2DEL can be induced by doping the (001) surface of SrTiO 3 . As for the interface, the surface 2DEL is confined by a band-bending potential in SrTiO 3 and consists of an orbitally polarized ladder of quantum confined Ti t 2g electrons that are highly mobile in the surface plane [5][6][7]14 . Thus far, the surface 2DEL has been studied only at carrier densities around 2 × 10 14 cm −2 , approximately a factor of five higher than typically observed at the LaAlO 3 /SrTiO 3 interface [5][6][7] . In the following, we present ARPES data extending to lower carrier densities that are directly comparable to the LaAlO 3 /SrTiO 3 interface. We achieve this by preparing SrTiO 3 (001) wafers in situ, which results in well-ordered clean surfaces that can be studied by ARPES over extended timescales, as they are less susceptible to the ultraviolet-induced formation of charged oxygen vacancies reported for cleaved SrTiO 3 5,7,15,16 . Details of the sample preparation are given in Methods. Figure 1a shows an energy-momentum intensity map for a 2DEL with a carrier density of n 2D ≈ 2.9 × 10 13 cm −2 estimated from the Luttinger volume of the first light subband and the two equivalent heavy subbands (see Supplementary Section 2). The most striking features of this data are replica bands at higher binding energy following the dispersion of the primary quasiparticle (QP) bands. The replica bands are all separated by approximately 100 meV and progressively lose intensity, but can be visualized up to the third replica in the curvature plot shown in Fi...
The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time [1][2][3][4][5][6][7][8][9][10]. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) [11,12] further strengthens these efforts. With a crystal structure similar to the infinite-layer cupratestransition metal oxide layers separated by a rare-earth spacer layerformal valence counting suggests that these materials have monovalent Ni 1+ cations with the same 3d electron count as Cu 2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weaklyinteracting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx 2 -y 2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics [13-15], well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo-or Anderson-lattice-like "oxide-intermetallic" replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.While the mechanism of superconductivity in the cuprates remains a subject of intense research, early on it was suggested that the conditions required for realizing high Tc superconductivity are rooted in the physics of a two-dimensional electron system subject to strong local repulsion [16,17]. This describes the Mott (charge-transfer) insulators in the stoichiometric parent compounds, characterized by spin ½ Heisenberg antiferromagnetism, from which superconductivity emerges upon doping. A long-standing question regards whether these "cuprate-Mott" conditions can be realized in other oxides; and extensive efforts to synthesize and engineer nickel oxides (nickelates) have promised such a realization [1-10]. Infinite-layer NdNiO2 became the first such nickelate superconductor following the recent discovery of superconductivity in Srdoped samples [11]. The undoped parent compound, produced by removing the apical oxygen atoms from the perovskite nickelate NdNiO3 using a metal hydride-based soft chemistry reduction process [10,[18][19][20], appears to be a close sibling of the cuprates-it is isostructural to the infinitelayer cuprates with monovalent Ni 1+ cations and possesses the same 3d 9 electron count as that of Cu 2+ cations in undoped cuprates. Yet, as we will reveal, the electronic structure of the undoped RNiO2 (R = La and Nd) remains distinct from the Mott, or charge-transfer, compounds of undoped cuprates, and even...
Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.