Global fossil fuel carbon dioxide (FFCO 2) emissions will be dictated to a great degree by the trajectory of emissions from urban areas. Conventional methods to quantify urban FFCO 2 emissions typically rely on self-reported economic/energy activity data transformed into emissions via standard emission factors. However, uncertainties in these traditional methods pose a roadblock to implementation of effective mitigation strategies, independently monitor long-term trends, and assess policy outcomes. Here, we demonstrate the applicability of the integration of a dense network of greenhouse gas sensors with a science-driven building and street-scale FFCO 2 emissions estimation through the atmospheric CO 2 inversion process. Whole-city FFCO 2 emissions agree within 3% annually. Current self-reported inventory emissions for the city of Indianapolis are 35% lower than our optimal estimate, with significant differences across activity sectors. Differences remain, however, regarding the spatial distribution of sectoral FFCO 2 emissions, underconstrained despite the inclusion of coemitted species information.
A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.
Airborne particulates play a significant role in the atmospheric radiative balance and impact human health. To characterize this impact, global-scale observations and data products are needed. Satellite products allow for this global coverage but require in situ validations. This study used a remote-controlled aerial vehicle to look at the horizontal, vertical, and temporal variability of airborne particulates within the first 150 m of the atmosphere. Four flights were conducted on December 4, 2014, between 12:00 pm and 5:00 pm local time. The first three flights flew a pattern of increasing altitude up to 140 m. The fourth flight was conducted at a near-constant altitude of 60 m. The mean PM 2.5 concentration for the three flights with varying altitude was 36.3 μg/m 3 , with the highest concentration occurring below 10 m altitude. The overall vertical variation was very small with a standard deviation of only 3.6 μg/m 3 . PM 2.5 concentration also did not change much throughout the day with mean concentrations for the altitude-varying flights of 35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.