Determination of the structure of human plaque will be of great benefit in the prediction of its formation and also the effects of treatment. However, a problem lies in the harvesting of undisturbed intact plaque samples from human volunteers and the viewing of the biofilms in their natural state. In this study, we used an in situ device for the in vivo generation of intact dental plaque biofilms on natural tooth surfaces in human subjects. Two devices were placed in the mouths of each of eight healthy volunteers and left to generate biofilm for 4 days. Immediately upon removal from the mouth, the intact, undisturbed biofilms were imaged by the non-invasive technique of confocal microscopy in both reflected light and fluorescence mode. Depth measurements indicated that the plaque formed in the devices was thicker round the edges at the enamel/nylon junction (range = 75-220 microm) than in the center of the devices (range = 35-215 microm). The reflected-light confocal images showed a heterogeneous structure in all of the plaque biofilms examined; channels and voids were clearly visible. This is in contrast to images generated previously by electron microscopy, suggesting a more compact structure. Staining of the biofilms with fluorescein in conjunction with fluorescence imaging suggested that the voids were fluid-filled. This more open architecture is consistent with recent models of biofilm structure from other habitats and has important implications for the delivery of therapeutics to desired targets within the plaque.
Future trials should evaluate new RPD materials and design technologies and include both long-term follow-up and health-related and patient-reported outcomes. Advances in materials and digital design/production along with patient education promise to further the application of RPDs and improve the quality of life for patients requiring RPDs.
Caries occurs at inaccessible stagnation sites where plaque removal is difficult. Here, the penetration through plaque of protective components, such as fluoride, is likely to be crucial in caries inhibition. We hypothesized that topically applied fluoride would readily penetrate such plaque deposits. In this study, plaque biofilms generated in vivo on natural enamel surfaces were exposed to NaF (1000 ppm F-) for 30 or 120 sec (equivalent to toothbrushing) or for 30 min. Biofilms were then sectioned throughout their depth, and the fluoride content of each section was determined with the use of a fluoride electrode. Exposure to NaF for 30 or 120 sec increased plaque fluoride concentrations near the saliva interface, while concentrations near the enamel surface remained low. Fluoride penetration increased with duration of NaF exposure. Removal of exogenous fluoride resulted in fluoride loss and redistribution. Penetration of fluoride into plaque biofilms during brief topical exposure is restricted, which may limit anti-caries efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.