Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.
The development of nontargeted analysis (NTA) methods to assess environmental contaminants of emerging concern, which are not commonly monitored, is paramount, especially when no previous knowledge on the identity of the pollution source is available. We compared complementary ionization techniques, namely electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), in the detection and identification of organic contaminants in tap and surface waters from South Florida. Furthermore, the performance of a simple rationalized NTA method was assessed by analyzing 10 complex mixtures as part of the US Environmental Protection Agency's Non-targeted Analysis Collaborative Trial interlaboratory study, where limitations of the NTA approach have been identified (e.g., number of employed databases, false positives). Different water bodies displayed unique chemical features that can be used as chemical fingerprints for source tracking and discrimination. The APCI technique detected at least threefold as many chemical features as ESI in environmental water samples, corroborating the fact that APCI is more energetic and can ionize certain classes of compounds that are traditionally difficult to ionize by liquid chromatography-mass spectrometry. Kendrick mass defect plots and Van Krevelen diagrams were applied to elucidate unique patterns and theoretical chemical space regions of anthropogenic organic compounds belonging to homologous series or similar classes covered by ESI and APCI. Overall, APCI and ESI were established as complementary, expanding the detected NTA chemical space which would otherwise be underestimated by a single ionization source operated in a single polarity setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.