In this paper, time, frequency, and time-frequency features derived from thermal infrared data are used to discriminate between self-reported affective states of an individual in response to visual stimuli drawn from the International Affective Pictures System. A total of six binary classification tasks were examined to distinguish baseline and affect states. Affect states were determined from subject-reported levels of arousal and valence. Mean adjusted accuracies of 70% to 80% were achieved for the baseline classifications tasks. Classification accuracies between high and low ratings of arousal and valence were between 50% and 60%, respectively. Our analysis showed that facial thermal infrared imaging data of baseline and other affective states may be separable. The results of this study suggest that classification of facial thermal infrared imaging data coupled with affect models can be used to provide information about an individual's affective state for potential use as a passive communication pathway.
In this study we examine the baseline characteristics of facial skin temperature, as measured by dynamic infrared thermal imaging, to gauge its potential as a physiological access pathway for non-verbal individuals with severe motor impairments. Frontal facial recordings were obtained from 12 asymptomatic adults in a resting state with a high-end infrared thermal imaging system. From the infrared thermal recordings, mean skin temperature time series were generated for regions of interest encompassing the nasal, periorbital and supraorbital areas. A 90% bandwidth for all regions of interest was found to be in the 1 Hz range. Over 70% of the time series were identified as nonstationary (p<0.05), with the nonstationary mean as the greatest contributing source. Correlation coefficients between regions were significant (p<0.05) and ranged from values of 0.30 (between periorbital and supraorbital regions) to 0.75 (between contralateral supraorbital regions). Using information measures, we concluded that the greatest degree of information existed in the nasal and periorbital regions. Mutual information existed across all regions but was especially prominent between the nasal and periorbital regions. Results from this study provide insight into appropriate analysis methods and potential discriminating features for the application of facial skin temperature as a physiological access pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.