Abstract-Skeletal myoblasts are an attractive cell type for transplantation because they are autologous and resistant to ischemia. However, clinical trials of myoblast transplantation in heart failure have been plagued by ventricular tachyarrhythmias and sudden cardiac death. The pathogenesis of these arrhythmias is poorly understood, but may be related to the fact that skeletal muscle cells, unlike heart cells, are electrically isolated by the absence of gap junctions. Using a novel in vitro model of myoblast transplantation in cardiomyocyte monolayers, we investigated the mechanisms of transplant-associated arrhythmias. Cocultures of human skeletal myoblasts and rat cardiomyocytes resulted in reentrant arrhythmias (spiral waves) that reproduce the features of ventricular tachycardia seen in patients receiving myoblast transplants. These arrhythmias could be terminated by nitrendipine, an L-type calcium channel blocker, but not by the Na channel blocker lidocaine. Genetic modification of myoblasts to express the gap junction protein connexin43 decreased arrhythmogenicity in cocultures, suggesting a specific means for increasing the safety (and perhaps the efficacy) of myoblast transplantation in patients.
The purpose of this investigation was to determine whether the addition of 3 depth jumps to a dynamic warm-up (DYNDJ) protocol would significantly improve 20-m sprint performance when compared with a cardiovascular (C) warm-up protocol or a dynamic (DYN) stretching protocol alone. The first part of the study identified optimal drop height for all subjects using the maximum jump height method. The identified optimal drop heights were later used during the DYNDJ protocol. The second part compared the 3 warm-up protocols above to determine their effect on 20-m sprint performance. Twenty-nine subjects (age, 20.8 ± 4.4 years; weight, 82.6 ± 9.9 kg; height, 180.3 ± 6.2 cm) performed 3 protocols of a C protocol, a DYN protocol, and a DYNDJ protocol in a randomized order. A 20-m sprint was performed 1 minute after the completion of each of the 3 protocols. Results displayed significant differences between each of the 3 protocols. A significant improvement (p = 0.001) of 2.2% was obtained in sprint time between the C protocol (3.300 ± 0.105 seconds) and the DYN protocol (3.227 ± 0.116 seconds), a further significant improvement of 5.01% was attained between the C and the DYNDJ protocols (3.300 ± 0.10 vs. 3.132 ± 0.120 seconds; p = 0.001). In addition, a significant improvement (p = 0.001) of 2.93% was observed between the DYN protocol (3.227 ± 0.116 seconds) and the DYNDJ protocol (3.132 ± 0.116 seconds). The data from this study advocate the use of DYNDJ protocol as a means of significantly improving 20-m sprint performance 1 minute after the DYNDJ protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.