Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
A nickel-catalyzed reductive cross-coupling of alkylpyridinium salts and aryl bromides has been developed using Mn as the reductant. Both primary and secondary alkylpyridinium salts can be used, and high functional group and heterocycle tolerance is observed, including for protic groups. Mechanistic studies indicate formation of an alkyl radical, and controlling its fate was key to the success of this reaction.
We report that the stereochemical outcome of the conjugate addition of organocopper reagents to bicyclic α,β-unsaturated lactams derived from pyroglutaminol is determined by the nature of the aminal group. Bicyclic α,β-unsaturated lactams in which the aminal is derived from a ketone have been found to afford products of syn conjugate addition. By contrast, bicyclic α,β-unsaturated lactams in which the aminal is derived from an aldehyde afford products of anti conjugate addition. These remarkably different results obtained from very similar starting materials are unexpected.
A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.
A nickel-catalyzed cross-coupling of benzylic pyridinium salts with arylboronic acids was developed. Coupled with chemoselective pyridinium formation, this method allows benzyl primary amines to be efficiently converted to di(hetero)arylmethanes. Excellent heteroaryl and functional group tolerance is observed, and a one-pot procedure enables benzylic amines to be converted to diarylmethanes directly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.