The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, rcsb.org), the US data center for the global PDB archive, serves thousands of
Data Depositors
in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without usage restrictions to more than 1 million rcsb.org Users worldwide and 600 000 pdb101.rcsb.org education-focused Users around the globe. PDB Data Depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy and 3D electron microscopy. PDB
Data Consumers
include researchers, educators and students studying Fundamental Biology, Biomedicine, Biotechnology and Energy. Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSB PDB web portals in support of a ‘Structural View of Biology.’
The tandem zinc finger (TZF) domain of the protein TIS11d binds to the class II AU-rich element (ARE) in the 3' untranslated region (3' UTR) of target mRNAs and promotes their deadenylation and degradation. The NMR structure of the TIS11d TZF domain bound to the RNA sequence 5'-UUAUUUAUU-3' comprises a pair of novel CCCH fingers of type CX(8)CX(5)CX(3)H separated by an 18-residue linker. The two TIS11d zinc fingers bind in a symmetrical fashion to adjacent 5'-UAUU-3' subsites on the single-stranded RNA via a combination of electrostatic and hydrogen-bonding interactions, with intercalative stacking between conserved aromatic side chains and the RNA bases. Sequence specificity in RNA recognition is achieved by a network of intermolecular hydrogen bonds, mostly between TIS11d main-chain functional groups and the Watson-Crick edges of the bases. The TIS11d structure provides insights into the RNA-binding functions of this large family of CCCH zinc finger proteins.
Summary
We report the target, biochemical basis, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the α-pyrone antibiotic myxopyronin (Myx). We show that Myx interacts with the RNAP “switch region,” the hinge that mediates opening and closing of the RNAP active-center cleft. We show that Myx prevents interaction of RNAP with promoter DNA. We present a crystal structure that defines contacts between Myx and RNAP and defines effects of Myx on RNAP conformation. We propose that Myx functions by preventing opening of the RNAP active-center cleft to permit entry of DNA during transcription initiation (“hinge jamming”). We establish further that the structurally related α-pyrone antibiotic corallopyronin and the structurally unrelated macrocyclic-lactone antibiotic ripostatin function through the same target and same mechanism. The RNAP switch region is an attractive target for identification of new broad-spectrum antibacterial therapeutic agents.
The Protein Data Bank (PDB) is the single global archive of experimentally determined three-dimensional (3D) structure data of biological macromolecules. Since 2003, the PDB has been managed by the Worldwide Protein Data Bank (wwPDB; wwpdb.org), an international consortium that collaboratively oversees deposition, validation, biocuration, and open access dissemination of 3D macromolecular structure data. The PDB Core Archive houses 3D atomic coordinates of more than 144 000 structural models of proteins, DNA/RNA, and their complexes with metals and small molecules and related experimental data and metadata. Structure and experimental data/metadata are also stored in the PDB Core Archive using the readily extensible wwPDB PDBx/mmCIF master data format, which will continue to evolve as data/metadata from new experimental techniques and structure determination methods are incorporated by the wwPDB. Impacts of the recently developed universal wwPDB OneDep deposition/validation/biocuration system and various methods-specific wwPDB Validation Task Forces on improving the quality of structures and data housed in the PDB Core Archive are described together with current challenges and future plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.